Concept explainers
Phosphate buffers are important in regulating the pH of intracellular fluids at pH values generally between 7.1 and 7.2.
a. What is the concentration ratio of H2PO4− to HPO42− in intracellular fluid at pH = 7.15?
b. Why is a buffer composed of H3O4 and H2PO4− ineffective in buffering the pH of intracellular fluid?
Trending nowThis is a popular solution!
Chapter 15 Solutions
Student Solutions Manual for Zumdahl/Zumdahl/DeCoste?s Chemistry, 10th Edition
Additional Science Textbook Solutions
Organic Chemistry
Cosmic Perspective Fundamentals
Campbell Biology: Concepts & Connections (9th Edition)
Biology: Life on Earth with Physiology (11th Edition)
- Phenol, C6H5OH, is a weak organic acid. Suppose 0.515 g of the compound is dissolved in enough water to make 125 mL of solution. The resulting solution is titrated with 0.123 M NaOH. C6H5OH(aq) + OH(aq) C6H5O(aq) + H2O() (a) What is the pH of the original solution of phenol? (b) What are the concentrations of all of the following ions at the equivalence point: Na+, H3O+, OH, and C6H5O? (c) What is the pH of the solution at the equivalence point?arrow_forwardFor conjugate acidbase pairs, how are Ka and Kb related? Consider the reaction of acetic acid in water CH3CO2H(aq)+H2O(l)CH3CO2(aq)+H3O+(aq) where Ka = 1.8 105 a. Which two bases are competing for the proton? b. Which is the stronger base? c. In light of your answer to part b. why do we classify the acetate ion (CH3CO2) as a weak base? Use an appropriate reaction to justify your answer. In general, as base strength increases, conjugate acid strength decreases. Explain why the conjugate acid of the weak base NH3 is a weak acid. To summarize, the conjugate base of a weak acid is a weak base and the conjugate acid of a weak base is a weak acid (weak gives you weak). Assuming Ka for a monoprotic strong acid is 1 106, calculate Kb for the conjugate base of this strong acid. Why do conjugate bases of strong acids have no basic properties in water? List the conjugate bases of the six common strong acids. To tie it all together, some instructors have students think of Li+, K+, Rb+, Cs+, Ca2+, Sr2+, and Ba2+ as the conjugate acids of the strong bases LiOH, KOH. RbOH, CsOH, Ca(OH)2, Sr(OH)2, and Ba(OH)2. Although not technically correct, the conjugate acid strength of these cations is similar to the conjugate base strength of the strong acids. That is, these cations have no acidic properties in water; similarly, the conjugate bases of strong acids have no basic properties (strong gives you worthless). Fill in the blanks with the correct response. The conjugate base of a weak acid is a_____base. The conjugate acid of a weak base is a_____acid. The conjugate base of a strong acid is a_____base. The conjugate acid of a strong base is a_____ acid. (Hint: Weak gives you weak and strong gives you worthless.)arrow_forwardWhat is the effect on the concentration of acetic acid, hydronium ion, and acetate ion when the following are added to an acidic buffer solution of equal concentrations of acetic acid and sodium acetate: (a) HCl. (b) KCH3CO2. (C) NaCl. (d) KOH. (e) CH3CO2Harrow_forward
- Weak base B has a pKb of 6.78 and weak acid HA has a pKa of 5.12. a Which is the stronger base, B or A? b Which is the stronger acid, HA or BH+? c Consider the following reaction: B(aq)+HA(aq)BH+(aq)+A(aq) Based on the information about the acid/base strengths for the species in this reaction, is this reaction favored to proceed more to the right or more to the left? Why? d An aqueous solution is made in which the concentration of weak base B is one half the concentration of its acidic salt, BHCl, where BH+ is the conjugate weak add of B. Calculate the pH of the solution. e An aqueous solution is made in which the concentration of weak acid HA twice the concentration of the sodium salt of the weak acid, NaA. Calculate the pH of the solution. f Assume the conjugate pairs B/BH+ and HA/A are capable of being used as color-based end point indicators in acidbase titrations, where B is the base form indicator and BH is the acid form indicator, and HA is the acid form indicator and A is the base form indicator. Select the indicator pair that would be best to use in each of the following titrations: (1) Titration of a strong acid with a strong base. (i) B/BH+ (ii) HA/A (2) Titration of a weak base with a strong acid. (i) B/BH+ (ii) HA/Aarrow_forwardEven though Ca(OH)2 is an inexpensive base, its limited solubility restricts its use. What is the pH of a saturated solution of Ca(OH)2?arrow_forwardWhat is the pH of a solution that consists of 0.20 M ammonia, NH3, and 0.20 M ammonium chloride, NH4Cl?arrow_forward
- Calculate the pH of a solution that is 0.40 M H2NNH2 and 0.80 M H2NNH3NO3. In order for this buffer to have pH = pKa, would you add HCl or NaOH? What quantity (moles) of which reagent would you add to 1.0 L of the original buffer so that the resulting solution has pH = pKa?arrow_forwardWhat is the effect on the concentration of ammonia, hydroxide ion, and ammonium ion when the following are added to a basic buffer solution of equal concentrations of ammonia and ammonium nitrate: (a) KI. (b) NH3. (c) HI. (d) NaOH. (9) NH4Clarrow_forwardComposition diagrams, commonly known as alpha plots, are often used to visualize the species in a solution of an acid or base as the pH is varied. The diagram for 0.100 M acetic acid is shown here. The plot shows how the fraction [alpha ()] of acetic acid in solution, =[CH3CO2H][CH3CO2H]+[CH3CO2] changes as the pH increases (blue curve). (The red curve shows how the fraction of acetate ion, CH3CO2, changes as the pH increases.) Alpha plots are another way of viewing the relative concentrations of acetic acid and acetate ion as a strong base is added to a solution of acetic acid in the course of a titration. (a) Explain why the fraction of acetic acid declines and that of acetate ion increases as the pH increases. (b) Which species predominates at a pH of 4, acetic acid or acetate ion? What is the situation at a pH of 6? (c) Consider the point where the two lines cross. The fraction of acetic acid in the solution is 0.5, and so is that of acetate ion. That is, the solution is half acid and half conjugate base; their concentrations are equal. At this point, the graph shows the pH is 4.74. Explain why the pH at this point is 4 74.arrow_forward
- A chemist wanted to determine the concentration of a solution of lactic acid, HC3H5O3. She found that the pH of the solution was 2.60. What was the concentration of the solution? The Kd of lactic acid is 1.4 104.arrow_forwardSodium benzoate is a salt of benzoic acid, C6H5COOH. A 0.15 M solution of this salt has a pOH of 5.31 at room temperature. a Calculate the value for the equilibrium constant for the reaction C6H5COO+H2OC6H5COOH+OH b What is the Ka value for benzoic acid? c Benzoic acid has a low solubility in water. What is its molar solubility if a saturated solution has a pH of 2.83 at room temperature?arrow_forwardPhosphate ions are abundant in cells, both as the ions themselves and as important substituents on organic molecules. Most importantly, the pKa for the H2PO4 ion is 7.20, which is very close to the normal pH in the body. H2PO4(aq) + H2O() H3O+(aq) + HPO42(aq) 1. What should the ratio [HPO42]/[H2PO4] be to control the pH at 7.40?arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning