Consider the following pH curves for 100.0 mL of two different acids with the same initial concentration each titrated by 0.10 M NaOH. a. Which plot represents a pH curve of a weak acid, and which plot is for a strong acid? How can you tell? Cite three differences between the plots that help you decide. b. In both cases the pH is relatively constant before the pH changes greatly. Does this mean that at some point in each titration each solution was a buffered solution? c. True or false? The equivalence point volume for each titration is the same. Explain your answer. d. True or false? The pH at the equivalence point for each titration is the same. Explain your answer.
Consider the following pH curves for 100.0 mL of two different acids with the same initial concentration each titrated by 0.10 M NaOH. a. Which plot represents a pH curve of a weak acid, and which plot is for a strong acid? How can you tell? Cite three differences between the plots that help you decide. b. In both cases the pH is relatively constant before the pH changes greatly. Does this mean that at some point in each titration each solution was a buffered solution? c. True or false? The equivalence point volume for each titration is the same. Explain your answer. d. True or false? The pH at the equivalence point for each titration is the same. Explain your answer.
Solution Summary: The author analyzes the pH curves for two different acids with the same initial concentration each titrated by 0.10
Consider the following pH curves for 100.0 mL of two different acids with the same initial concentration each titrated by 0.10 M NaOH.
a. Which plot represents a pH curve of a weak acid, and which plot is for a strong acid? How can you tell? Cite three differences between the plots that help you decide.
b. In both cases the pH is relatively constant before the pH changes greatly. Does this mean that at some point in each titration each solution was a buffered solution?
c. True or false? The equivalence point volume for each titration is the same. Explain your answer.
d. True or false? The pH at the equivalence point for each titration is the same. Explain your answer.
LTS
Solid:
AT=Te-Ti
Trial 1
Trial 2
Trial 3
Average
ΔΗ
Mass water, g
24.096
23.976
23.975
Moles of solid, mol
0.01763
001767
0101781
Temp. change, °C
2.9°C
11700
2.0°C
Heat of reaction, J
-292.37J -170.473
-193.26J
AH, kJ/mole
16.58K 9.647 kJ 10.85 kr
16.58K59.64701
KJ
mol
12.35k
Minimum AS,
J/mol K
41.582
mol-k
Remember: q = mCsAT (m = mass of water, Cs=4.184J/g°C) & qsin =-qrxn &
Show your calculations for:
AH in J and then in kJ/mole for Trial 1:
qa (24.0969)(4.1845/g) (-2.9°C)=-292.37J
qsin =
qrxn =
292.35 292.37J
AH in J = 292.375 0.2923kJ
0.01763m01
=1.65×107
AH in kJ/mol =
=
16.58K
0.01763mol
mol
qrx
Minimum AS in J/mol K (Hint: use the average initial temperature of the three trials, con
Kelvin.)
AS=AHIT
(1.65×10(9.64×103) + (1.0
Jimai
For the compound: C8H17NO2
Use the following information to come up with a plausible structure:
8
This compound has "carboxylic acid amide" and ether functional groups.
The peaks at 1.2ppm are two signals that are overlapping one another.
One of the two signals is a doublet that represents 6 hydrogens; the
other signal is a quartet that represents 3 hydrogens.
Vnk the elements or compounds in the table below in decreasing order of their boiling points. That is, choose 1 next to the substance with the highest bolling
point, choose 2 next to the substance with the next highest boiling point, and so on.
substance
C
D
chemical symbol,
chemical formula
or Lewis structure.
CH,-N-CH,
CH,
H
H 10: H
C-C-H
H H H
Cale
H 10:
H-C-C-N-CH,
Bri
CH,
boiling point
(C)
Сен
(C) B
(Choose
Chapter 15 Solutions
Student Solutions Manual for Zumdahl/Zumdahl/DeCoste?s Chemistry, 10th Edition
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.