Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 7P
To determine
The maximum possible speed of object.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A mass resting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. It takes 3.0 JJ of work to compress the spring by 0.13 mm . If the spring is compressed, and the mass is released from rest, it experiences a maximum acceleration of 12 m/s2m/s2.
Find the value of the mass.
Express your answer to two significant figures and include the appropriate units.
7. The spring is compressed by the mass (m= 2 kg) to half of its original length and then released.
The surface is not smooth and has coefficient of friction 0.2. What will be its speed after 2 s.
The spring constant is 200 N/m and the unstretched length of the spring is 60 cm.The mass is
not connected to the spring and it can slide on the surface after it is released after compression.
k
m
x = 0
Q12
Chapter 15 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 15.1 - A block on the end of a spring is pulled to...Ch. 15.2 - Consider a graphical representation (Fig. 15.3) of...Ch. 15.2 - shows two curves representing particles undergoing...Ch. 15.2 - An object of mass m is hung from a spring and set...Ch. 15.4 - The ball in Figure 15.13 moves in a circle of...Ch. 15.5 - The grandfather clock in the opening storyline...Ch. 15 - Prob. 1OQCh. 15 - Prob. 2OQCh. 15 - Prob. 3OQCh. 15 - Prob. 4OQ
Ch. 15 - Prob. 5OQCh. 15 - Prob. 6OQCh. 15 - Prob. 7OQCh. 15 - Prob. 8OQCh. 15 - Prob. 9OQCh. 15 - Prob. 10OQCh. 15 - Prob. 11OQCh. 15 - Prob. 12OQCh. 15 - Prob. 13OQCh. 15 - Prob. 14OQCh. 15 - Prob. 15OQCh. 15 - Prob. 16OQCh. 15 - Prob. 17OQCh. 15 - Prob. 1CQCh. 15 - Prob. 2CQCh. 15 - Prob. 3CQCh. 15 - Prob. 4CQCh. 15 - Prob. 5CQCh. 15 - Prob. 6CQCh. 15 - Prob. 7CQCh. 15 - Prob. 8CQCh. 15 - Prob. 9CQCh. 15 - Prob. 10CQCh. 15 - Prob. 11CQCh. 15 - Prob. 12CQCh. 15 - Prob. 13CQCh. 15 - A 0.60-kg block attached to a spring with force...Ch. 15 - Prob. 2PCh. 15 - Prob. 3PCh. 15 - Prob. 4PCh. 15 - The position of a particle is given by the...Ch. 15 - A piston in a gasoline engine is in simple...Ch. 15 - Prob. 7PCh. 15 - Prob. 8PCh. 15 - Prob. 9PCh. 15 - Prob. 10PCh. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Review. A particle moves along the x axis. It is...Ch. 15 - Prob. 14PCh. 15 - A particle moving along the x axis in simple...Ch. 15 - The initial position, velocity, and acceleration...Ch. 15 - Prob. 17PCh. 15 - Prob. 18PCh. 15 - Prob. 19PCh. 15 - You attach an object to the bottom end of a...Ch. 15 - Prob. 21PCh. 15 - Prob. 22PCh. 15 - Prob. 23PCh. 15 - Prob. 24PCh. 15 - Prob. 25PCh. 15 - Prob. 26PCh. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - A simple harmonic oscillator of amplitude A has a...Ch. 15 - Review. A 65.0-kg bungee jumper steps off a bridge...Ch. 15 - Review. A 0.250-kg block resting on a...Ch. 15 - Prob. 32PCh. 15 - Prob. 33PCh. 15 - A seconds pendulum is one that moves through its...Ch. 15 - A simple pendulum makes 120 complete oscillations...Ch. 15 - A particle of mass m slides without friction...Ch. 15 - A physical pendulum in the form of a planar object...Ch. 15 - Prob. 38PCh. 15 - Prob. 39PCh. 15 - Consider the physical pendulum of Figure 15.16....Ch. 15 - Prob. 41PCh. 15 - Prob. 42PCh. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - A watch balance wheel (Fig. P15.25) has a period...Ch. 15 - Prob. 46PCh. 15 - Prob. 47PCh. 15 - Show that the time rate of change of mechanical...Ch. 15 - Show that Equation 15.32 is a solution of Equation...Ch. 15 - Prob. 50PCh. 15 - Prob. 51PCh. 15 - Prob. 52PCh. 15 - Prob. 53PCh. 15 - Considering an undamped, forced oscillator (b =...Ch. 15 - Prob. 55PCh. 15 - Prob. 56APCh. 15 - An object of mass m moves in simple harmonic...Ch. 15 - Prob. 58APCh. 15 - Prob. 59APCh. 15 - Prob. 60APCh. 15 - Four people, each with a mass of 72.4 kg, are in a...Ch. 15 - Prob. 62APCh. 15 - Prob. 63APCh. 15 - An object attached to a spring vibrates with...Ch. 15 - Prob. 65APCh. 15 - Prob. 66APCh. 15 - A pendulum of length L and mass M has a spring of...Ch. 15 - A block of mass m is connected to two springs of...Ch. 15 - Prob. 69APCh. 15 - Prob. 70APCh. 15 - Review. A particle of mass 4.00 kg is attached to...Ch. 15 - Prob. 72APCh. 15 - Prob. 73APCh. 15 - Prob. 74APCh. 15 - Prob. 75APCh. 15 - Review. A light balloon filled with helium of...Ch. 15 - Prob. 78APCh. 15 - A particle with a mass of 0.500 kg is attached to...Ch. 15 - Prob. 80APCh. 15 - Review. A lobstermans buoy is a solid wooden...Ch. 15 - Prob. 82APCh. 15 - Prob. 83APCh. 15 - A smaller disk of radius r and mass m is attached...Ch. 15 - Prob. 85CPCh. 15 - Prob. 86CPCh. 15 - Prob. 87CPCh. 15 - Prob. 88CPCh. 15 - A light, cubical container of volume a3 is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the data for a block of mass m = 0.250 kg given in Table P16.59. Friction is negligible. a. What is the mechanical energy of the blockspring system? b. Write expressions for the kinetic and potential energies as functions of time. c. Plot the kinetic energy, potential energy, and mechanical energy as functions of time on the same set of axes. Problems 5965 are grouped. 59. G Table P16.59 gives the position of a block connected to a horizontal spring at several times. Sketch a motion diagram for the block. Table P16.59arrow_forwardThe position of a particle attached to a vertical spring is given by y=(y0cost)j. The y axis points upward, y0 = 14.5 cm. and = 18.85 rad/s. Find the position of the particle at a. t = 0 and b. t = 9.0 s. Give your answers in centimeters.arrow_forwardYou attach a block to the bottom end of a spring hanging vertically. You slowly let the block move down and find that it hangs at rest with the spring stretched by 15.0 cm. Next, you lift the block back up to the initial position and release it from rest with the spring unstretched. What maximum distance does it move down? (a) 7.5 cm (b) 15.0 cm (c) 30.0 cm (d) 60.0 cm (e) The distance cannot be determined without knowing the mass and spring constant.arrow_forward
- A 1.50-kg mass is attached to a spring with spring constant 33.0 N/m on a frictionless, horizontal table. The springmass system is stretched to 4.00 cm beyond the equilibrium position of the spring and is released from rest at t = 0. a. What is the maximum speed of the 1.50-kg mass? b. What is the maximum acceleration of the 1.50-kg mass? c. What are the position, velocity, and acceleration of the 1.50-kg mass as functions of time?arrow_forwardA spring 1.50 m long with force constant 475 N/m is hung from the ceiling of an elevator, and a block of mass 10.0 kg is attached to the bottom of the spring. (a) By how much is the spring stretched when the block is slowly lowered to its equilibrium point? (b) If the elevator subsequently accelerates upward at 2.00 m/s2, what is the position of the block, taking the equilibrium position found in part (a) as y = 0 and upwards as the positive y-direction. (c) If the elevator cable snaps during the acceleration, describe the subsequent motion of the block relative to the freely falling elevator. What is the amplitude of its motion?arrow_forwardA block of mass M rests on a table. It is fastened to the lower end of a light, vertical spring. The upper end of the spring is fastened to a block of mass m. The upper block is pushed down by an additional force 3mg, so the spring compression is 4mg/k. In this configuration, the upper block is released from rest. The spring lifts the lower block off the table. In terms of m, what is the greatest possible value for m?arrow_forward
- You attach a block to the bottom end of a spring hanging vertically. You slowly let the block move down and find that it hangs at rest with the spring stretched by 15.0 cm. Next, you lilt the block back up to the initial position and release it from rest with the spring unstretched. What maximum distance does it move dawn? (a) 7.5 cm (b) 15.0 cm (c) 30.0 cm (d) 60.0 cm (e) The distance cannot be determined without knowing the mass and spring constant.arrow_forwardA particle of mass m moving in one dimension has potential energy U(x) = U0[2(x/a)2 (x/a)4], where U0 and a are positive constants. (a) Find the force F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and unstable equilibrium. (c) What is the angular frequency of oscillations about the point of stable equilibrium? (d) What is the minimum speed the particle must have at the origin to escape to infinity? (e) At t = 0 the particle is at the origin and its velocity is positive and equal in magnitude to the escape speed of part (d). Find x(t) and sketch the result.arrow_forwardA 1.50-kg box rests atop a massless vertical spring with k = 4250 N/m that has been compressed by 15.0 cm from its equilibrium position. The box is released and leaves the spring when it reaches its equilibrium position. What is the maximum height the box reaches above its original position?arrow_forward
- Review. This problem extends the reasoning of Problem 41 in Chapter 9. Two gliders are set in motion on an air track. Glider 1 has mass m1 = 0.240 kg and moves to the right with speed 0.740 m/s. It will have a rear-end collision with glider 2, of mass m2 = 0.360 kg, which initially moves to the right with speed 0.120 m/s. A light spring of force constant 45.0 N/m is attached to the back end of glider 2 as shown in Figure P9.41. When glider 1 touches the spring, superglue instantly and permanently makes it stick to its end of the spring. (a) Find the common speed the two gliders have when the spring is at maximum compression. (b) Find the maximum spring compression distance. The motion after the gliders become attached consists of a combination of (1) the constant-velocity motion of the center of mass of the two-glider system found in part (a) and (2) simple harmonic motion of the gliders relative to the center of mass. (c) Find the energy of the center-of-mass motion. (d) Find the energy of the oscillation.arrow_forwardOne type of toy car contains a spring that is compressed as the wheels are rolled backward along a surface. The spring remains compressed until the wheels are freed and the car is allowed to roll forward. Jose learns that if he rolls the car backward for a greater distance (up to a certain point), the car will go faster when he releases it. The spring compresses 1.00 cm for every 10.0 cm the car is rolled backward. a. Assuming the spring constant is 150.0 N/m, what is the elastic potential energy stored in the spring when Jose rolls the car backward 20.0 cm? b. What is the elastic potential energy stored in the spring when he rolls the car backward 30.0 cm? c. Explain the correlation between the results for parts (a) and (b) and Joses observations of different speeds.arrow_forwardA small ball is tied to a string and hung as shown in Figure P8.34. It is released from rest at position 1, and, during the swing, the string meets a fixed peg as shown. Explain why position 2 at which the ball comes momentarily to rest must be at the same height as position 1.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY