Chemistry with Access Code, Hybrid Edition
9th Edition
ISBN: 9781285188492
Author: Steven S. Zumdahl
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 77E
Estimate the pH of a solution in which bromcresol green is blue and thymol blue is yellow. (See Fig. 14-8.)
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Like any equilibrium constant, Kw changes with temperature. (a) Given that autoionization is endothermic, how does Kw change with rising T ? Explain with a reaction that includes heat as reactant or product. (b) In many medical applications, the value of Kw at 37°C (body temperature) may be more appropriate than the value at 25°C, 1.0 x 10-14. The pH of pure water at 37°C is 6.80. Calculate Kw, pOH, and [OH-] at this temperature.
Polymers are not very soluble in water, but their solubility increases if they have charged groups. (a) Case in, a milk protein,contains many —COO⁻ groups on its side chains. How does the solubility of casein vary with pH? (b) Histones are proteins es-sential to the function of DNA. They are weakly basic due to the presence of side chains with —NH2 and =NH groups. How does the solubility of a histone vary with pH?
7 (a) Describe what happens when each of the following molecules is separately dissolved in
water and illustrate with an equation in each case:
(i) ethavois acid (CH;COOH)
(ii) ammonia (NH3)
(b) Identify the conjugate acids and bases in the substances mentioned in question 7(a) above.
Chapter 15 Solutions
Chemistry with Access Code, Hybrid Edition
Ch. 15 - What is meant by the presence of a common ion? How...Ch. 15 - Define a buffer solution. What makes up a buffer...Ch. 15 - One of the most challenging parts of solving...Ch. 15 - A good buffer generally contains relatively equal...Ch. 15 - Draw the general titration curve for a strong acid...Ch. 15 - Instead of the titration of a strong acid by a...Ch. 15 - Sketch the titration curve for a weak acid...Ch. 15 - Sketch the titration curve for a weak base...Ch. 15 - What is an acidbase indicator? Define the...Ch. 15 - Why does an indicator change from its acid color...
Ch. 15 - What are the major species in solution after...Ch. 15 - A friend asks the following: Consider a buffered...Ch. 15 - Mixing together solutions of acetic acid and...Ch. 15 - Could a buffered solution be made by mixing...Ch. 15 - Sketch two pH curves, one for the titration of a...Ch. 15 - Sketch a pH curve for the titration of a weak acid...Ch. 15 - You have a solution of the weak acid HA and add...Ch. 15 - You have a solution of the weak acid HA and add...Ch. 15 - The common ion effect for weak acids is to...Ch. 15 - Prob. 10QCh. 15 - A best buffer has about equal quantities of weak...Ch. 15 - Consider the following pH curves for 100.0 mL of...Ch. 15 - An acid is titrated with NaOH. The following...Ch. 15 - Consider the following four titrations. i. 100.0...Ch. 15 - Figure 14-4 shows the pH curves for the titrations...Ch. 15 - Acidbase indicators mark the end point of...Ch. 15 - How many of the following are buffered solutions?...Ch. 15 - Which of the following can be classified as buffer...Ch. 15 - A certain buffer is made by dissolving NaHCO3 and...Ch. 15 - A buffer is prepared by dissolving HONH2 and...Ch. 15 - Calculate the pH of each of the following...Ch. 15 - Calculate the pH of each of the following...Ch. 15 - Compare the percent dissociation of the acid in...Ch. 15 - Compare the percent ionization of the base in...Ch. 15 - Calculate the pH after 0.020 mole of HCl is added...Ch. 15 - Calculate the pH after 0.020 mole of HCl is added...Ch. 15 - Calculate the pH after 0.020 mole of NaOH is added...Ch. 15 - Calculate the pH after 0.020 mole of NaOH is added...Ch. 15 - Which of the solutions in Exercise 21 shows the...Ch. 15 - Prob. 30ECh. 15 - Calculate the pH of a solution that is 1.00 M HNO2...Ch. 15 - Calculate the pH of a solution that is 0.60 M HF...Ch. 15 - Calculate the pH after 0.10 mole of NaOH is added...Ch. 15 - Calculate the pH after 0.10 mole of NaOH is added...Ch. 15 - Calculate the pH of each of the following buffered...Ch. 15 - Calculate the pH of each of the following buffered...Ch. 15 - Calculate the pH of a buffered solution prepared...Ch. 15 - A buffered solution is made by adding 50.0 g NH4Cl...Ch. 15 - Calculate the pH after 0.010 mole of gaseous HCl...Ch. 15 - An aqueous solution contains dissolved C6H5NH3Cl...Ch. 15 - Calculate the mass of sodium acetate that must be...Ch. 15 - What volumes of 0.50 M HNO2 and 0.50 M NaNO2 must...Ch. 15 - Consider a solution that contains both C5H5N and...Ch. 15 - Calculate the ratio [NH3]/[NH4+] in...Ch. 15 - Carbonate buffers are important in regulating the...Ch. 15 - When a person exercises, muscle contractions...Ch. 15 - Consider the acids in Table 13-2. Which acid would...Ch. 15 - Consider the bases in Table 13-3. Which base would...Ch. 15 - Calculate the pH of a solution that is 0.40 M...Ch. 15 - Calculate the pH of a solution that is 0.20 M HOCl...Ch. 15 - Which of the following mixtures would result in...Ch. 15 - Which of the following mixtures would result in a...Ch. 15 - What quantity (moles) of NaOH must be added to 1.0...Ch. 15 - Calculate the number of moles of HCl(g) that must...Ch. 15 - Consider the titration of a generic weak acid HA...Ch. 15 - Sketch the titration curve for the titration of a...Ch. 15 - Consider the titration of 40.0 mL of 0.200 M HClO4...Ch. 15 - Consider the titration of 80.0 mL of 0.100 M...Ch. 15 - Consider the titration of 100.0 mL of 0.200 M...Ch. 15 - Consider the titration of 100.0 mL of 0.100 M...Ch. 15 - Lactic acid is a common by-product of cellular...Ch. 15 - Repeat the procedure in Exercise 61, but for the...Ch. 15 - Repeat the procedure in Exercise 61, but for the...Ch. 15 - Repeat the procedure in Exercise 61, but for the...Ch. 15 - Calculate the pH at the halfway point and at the...Ch. 15 - In the titration of 50.0 mL of 1.0 M methylamine,...Ch. 15 - You have 75.0 mL of 0.10 M HA. After adding 30.0...Ch. 15 - A student dissolves 0.0100 mole of an unknown weak...Ch. 15 - Two drops of indicator HIn (Ka = 1.0 109), where...Ch. 15 - Methyl red has the following structure: It...Ch. 15 - Potassium hydrogen phthalate, known as KHP (molar...Ch. 15 - A certain indicator HIn has a pKa of 3.00 and a...Ch. 15 - Which of the indicators in Fig. 14-8 could be used...Ch. 15 - Prob. 74ECh. 15 - Which of the indicators in Fig. 14-8 could be used...Ch. 15 - Prob. 76ECh. 15 - Estimate the pH of a solution in which bromcresol...Ch. 15 - Estimate the pH of a solution in which crystal...Ch. 15 - A solution has a pH of 7.0. What would be the...Ch. 15 - A solution has a pH of 4.5. What would be the...Ch. 15 - Derive an equation analogous to the...Ch. 15 - a. Calculate the pH of a buffered solution that is...Ch. 15 - Tris(hydroxymethyl)aminomethane, commonly called...Ch. 15 - You make 1.00 L of a buffered solution (pH = 4.00)...Ch. 15 - You have the following reagents on hand: Solids...Ch. 15 - Prob. 86AECh. 15 - Phosphate buffers are important in regulating the...Ch. 15 - What quantity (moles) of HCl(g) must be added to...Ch. 15 - Prob. 89AECh. 15 - The following plot shows the pH curves for the...Ch. 15 - Calculate the volume of 1.50 102 M NaOH that must...Ch. 15 - Prob. 92AECh. 15 - A certain acetic acid solution has pH = 2.68....Ch. 15 - A 0.210-g sample of an acid (molar mass = 192...Ch. 15 - The active ingredient in aspirin is...Ch. 15 - One method for determining the purity of aspirin...Ch. 15 - A student intends to titrate a solution of a weak...Ch. 15 - A student titrates an unknown weak acid, HA, to a...Ch. 15 - A sample of a certain monoprotic weak acid was...Ch. 15 - Consider 1.0 L of a solution that is 0.85 M HOC6H5...Ch. 15 - What concentration of NH4Cl is necessary to buffer...Ch. 15 - Consider the following acids and bases: HCO2H Ka =...Ch. 15 - Consider a buffered solution containing CH3NH3Cl...Ch. 15 - Consider the titration of 150.0 mL of 0.100 M HI...Ch. 15 - Consider the titration of 100.0 mL of 0.100 M HCN...Ch. 15 - Consider the titration of 100.0 mL of 0.200 M...Ch. 15 - Consider the following four titrations (iiv): i....Ch. 15 - Another way to treat data from a pH titration is...Ch. 15 - A buffer is made using 45.0 mL of 0.750 M HC3H5O2...Ch. 15 - A 0.400-M solution of ammonia was titrated with...Ch. 15 - What volume of 0.0100 M NaOH must be added to 1.00...Ch. 15 - Consider a solution formed by mixing 50.0 mL of...Ch. 15 - When a diprotic acid. H2A. is titrated with NaOH,...Ch. 15 - Prob. 114CPCh. 15 - The titration of Na2CO3 with HCl bas the following...Ch. 15 - Consider the titration curve in Exercise 115 for...Ch. 15 - A few drops of each of the indicators shown in the...Ch. 15 - Malonic acid (HO2CCH2CO2H) is a diprotic acid. In...Ch. 15 - A buffer solution is prepared by mixing 75.0 mL of...Ch. 15 - A 10.00-g sample of the ionic compound NaA, where...Ch. 15 - Calculate the pH of a solution prepared by mixing...Ch. 15 - Consider a solution prepared by mixing the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
How does trandlation differ from transcription?
Microbiology: Principles and Explorations
Describe Mendels conclusions about how traits are passed from generation to generation.
Concepts of Genetics (12th Edition)
An electric motor has an effective resistance of 32.0 and an inductive reactance of 45.0 when working under l...
Fundamentals of Physics Extended
2. A gene is a segment of DNA that has the information to produce a functional product. The functional product ...
Genetics: Analysis and Principles
45. Calculate the mass of nitrogen dissolved at room temperature in an 80.0-L home aquarium. Assume a total pre...
Chemistry: Structure and Properties (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Write the Lewis structures of the reactants and product of each of the following equations, and identify the Lewis acid and the Lewis base in each: (a) CS2+SHHCS3 (b) BF3+FBF4 (c) I+SnI2SnI3 (d) Al(OH)3+OHAl(OH)4 (e) F+SO3SFO3arrow_forward(a) Write down an equation for the reaction of ammonia solution (NH3) and hydrogenbromide (HBr) and explain the reaction in terms of the Brønsted theory of acids andbases (b) Write down an equation for the reaction of aluminium chloride (AlCl3) and chlorideions (Cl-) in the absence of water and explain the reaction in terms of the Lewis theory of acids and basesarrow_forwardA solution is prepared at 25 °C that Is initlally 0.43M in dimethylamine ((CH, NH, a weak base with K, =5.4x10, and 0.15M in dimethylammonlum -4 and 0.15M In dimethylammonium bromide ((CH,),NH,Br) ((CH,) NH,Br). Calculate the pH of the solution. Round your answer to 2 decimal places. bгomide 2. pH Explanation Check 2021 McGraw-Hill Education. All Rights Reserved. Terms of Use Privac hparrow_forward
- (a) Describe what happens when each of the following molecules is separately dissolved in water and illustrate with an equation in each case: ethanoic acid (CH3COOH) ammonia (NH3) (b) Identify the conjugate acids and bases in the substances mentioned in question 7(a) above. (c) Explain the difference between: (i) a strong acid and weak acid and (ii) a strong base and a weak basearrow_forwardThe acid-base indicator "Thymol Blue" has two transition ranges as listed below (with the corresponding acid dissociation constants): 7. Ka AcidColour BaseColour Thymol Blue 1 Thymol Blue 2 2.24 x 102 Red Yellow 1.26 x 10 Yellow Blue What colour would you expect it to be at the following pH values? Briefly justify your answers. (a) (b) (c) (d) 0.9 5.2 7.8 10.7arrow_forwardPlease answer these questions on your Page 8 (a) HA(aq) is a weak acid with a dissociation constant, Ka, of 7.7 x 10-¹2. What is the pH of a 0.011 M solution of A-(aq)? The temperature is 25°C. (b) For the reaction A(g) A(1), the equilibrium constant is 0.666 at 25.0°C and 0.111 at 75.0°C. Making the approximation that the entropy and enthalpy changes of this reaction do not change with temperature, at what temperature will the equilibrium constant be equal to 0.777?arrow_forward
- A solution is prepared at 25 °C that is initially 0.057M in dimethylamine ((CH3), NH), : a weak base with K,=5.4 × 10 and 0.29M in dimethylammonium bromide ((CH,), NH,Br). Calculate the pH of the solution. Round your answer to 2 decimal places. 2 pH = |||arrow_forward(a) Identify the Brønsted–Lowry acid and base in the reaction (b) Identify the Lewis acid and base in the reaction.arrow_forwardIn each of the following cases, is the concentration of acid before and after dissociation nearly the same or very different?Explain your reasoning: (a) a concentrated solution of a strong acid; (b) a concentrated solution of a weak acid; (c) a dilute solu-tion of a weak acid; (d) a dilute solution of a strong acid.arrow_forward
- What mass (in g) of potassium fluoride should be added to 0.50 Lof 0.255-M HF(aq) at 25 °C to give a solution with a pH of 3.85 given that the Ką of HF is 7.1x10-4? Molar mass of KF = 58.1 g/mol. Express your answer in decimal notation rounded to three significant figures.arrow_forward7 (a) Describe what happens when each of the following molecules is separately dissolved in water and illustrate with an equation in each case: (i) ethanoic acid (CH₂COOH) (ii) ammonia (NH3) (b) Identify the conjugate acids and bases in the substances mentioned in question 7(a) above. (c) Explain the difference between: (i) a strong acid and weak acid and (ii) a strong base and a weak basearrow_forwardI am unsure on how to solve this problem, and it requires not use the H+ approximation where it equals 0.05M and pH=1.301. I would appreciate if I can get some help showing how to solve this problem without using the approximation. (1) Calculate the pH of water containing 0.05 M HCI + 0.05 M KCI, do not use the approximation [H+ ] = aH+arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY