Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 6CQ
To determine
The cubic crystal for which the sequence of the values of sin2 θ for the diffraction peaks are 3, 4, 8, 11, 12, 16, 19.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
no chatgpt, show solution. thx^^
P
20 mm
15 mm
100 mm
200 mm
100 mm
15 mm
-450.0 mm-
-300.0 mm
300.0 mm
-300.0 mm
-450.0 mm-
300.0 mm
The butt connection shows 8-24mm bolts. Spacing and dimensions are shown in figure
PSAD-020. The plate is made of A36 steel.
Allowable tensile stress on gross area = 0.6Fy
Allowable tensile stress on net area = 0.5Fu
Allowable shear stress on net area = 0.3Fu
Bolt hole diameter = 26mm
Determine the allowable tensile load P based on net area rupture.
Determine the allowable tensile load P based on gross area yielding.
Determine the allowable tensile load P based on block shear strength.
P
300 mm
P
75 mm
-75 mm
P
I
75 mm
100 mm
-125 mm
Shown in figure PSAD-022 is a splice connection made of 8-22mm A325 bolts and a PL
300 x 12 mm made of A36 steel, connected back-to-back. The connection joins together
two A992 W410X67 (Fy = 50 ksi, Fu = 65 ksi) carrying a tension load P. Assume U =
0.70. Ignore bolt shear failure.
Determine the design capacity of the connection based on yielding of the plate.
Determine the design capacity of the section based on yielding of the wide flange section.
Determine the design capacity of the section based on rupture of the plate.
Determine the design capacity of the section based on block shear of the plate.
Chapter 15 Solutions
Materials Science And Engineering Properties
Ch. 15 - Prob. 1CQCh. 15 - Prob. 2CQCh. 15 - Prob. 3CQCh. 15 - Prob. 4CQCh. 15 - Prob. 5CQCh. 15 - Prob. 6CQCh. 15 - Prob. 7CQCh. 15 - Prob. 8CQCh. 15 - Prob. 9CQCh. 15 - Prob. 10CQ
Ch. 15 - Prob. 11CQCh. 15 - Prob. 12CQCh. 15 - Prob. 13CQCh. 15 - Prob. 14CQCh. 15 - Prob. 15CQCh. 15 - Prob. 16CQCh. 15 - Prob. 17CQCh. 15 - Prob. 18CQCh. 15 - Prob. 19CQCh. 15 - Prob. 20CQCh. 15 - Prob. 21CQCh. 15 - Prob. 22CQCh. 15 - Prob. 24CQCh. 15 - Prob. 25CQCh. 15 - Prob. 1ETSQCh. 15 - Prob. 2ETSQCh. 15 - Prob. 3ETSQCh. 15 - Prob. 4ETSQCh. 15 - Prob. 5ETSQCh. 15 - Prob. 6ETSQCh. 15 - Prob. 7ETSQCh. 15 - Prob. 8ETSQCh. 15 - Prob. 9ETSQCh. 15 - Prob. 10ETSQCh. 15 - Prob. 11ETSQCh. 15 - Prob. 12ETSQCh. 15 - Prob. 13ETSQCh. 15 - Prob. 14ETSQCh. 15 - Prob. 15ETSQCh. 15 - Prob. 16ETSQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Properties of L 152 x 152 x 11.1 A = 3280 mm² d = 152 mm t = 11.1 mm x = 41.9 mm Ix=7.33 x 10 mm⭑ Iy = 7.33 x 10 mm Zx=119 x 103 mm³ Sx = 66.5 x 103 mm³ P ° ° ° ° ° ° ° ° P Shown in figure PSAD-021 is a truss joint detail. It makes use of two rows of 22-mm bolts. The members are L 152 x 152 x 11.1 made of A36. The plate connecting the members is a 9mm-thick A36 plate (Fy = 36 ksi, Fu = 58 ksi). Assume that U = 0.85, ignore 85% limit of net area. Determine the effective net area of the section. Determine the allowable capacity of the connection.arrow_forwardA floor consists of 8 steel beams/girders supporting three 1-way slab panels. The beams are supported on 6 columns around the perimeter of the roof. The roof is subjected to a uniform pressure of 150 psf . All beams and girders weigh 90lb//ft. Use free-body diagrams and statics equations to determine the load and reactions on all the beams (Beam 1, 2, 3 and 4), girders (Girders 1 and 2), and columns (Columns 1, 2 and 3). (we only focused on one-way slabs in the class + pls include FBDs)arrow_forwardDesign an intake tower with gates meet the following requirement: • Normal water surface elevation = 100 m mean sea level • Max. reservoir elevation = 106 m msl • Min. reservoir elevation = 90 m msl • Bottom elevation = 81m msl • Flow rate=57369.6 m³/day.. Velocity = 0.083 m/s ⚫c=0.6, Density for water =1000 kg/m³. Density for concrete =2310 kg/m³ Estimate water elevation that make safety factor =1 ร 4 m Uppr gate 2m 1 m Lower gate 2m Gate 6m 2m 4 m ร 2 m wzarrow_forward
- 4. The storm hyetograph below produced 530 acre-ft of runoff over the 725-acre Green River watershed. Plot the storm hyetograph and compute and plot the excess rainfall hyetograph using the op-index method. Time (hours) 0-33-66-99-12 12-15 Rainfall Intensity (in/hr) 0.2 0.8|1.2 1.8 0.9arrow_forward-125 mm -125 mm -125 mm 100 mm P A C 310 x 45 made of A36 is connected to a plate and carries a load P in tension. The bolts are 22-mm in diameter and is staggered as shown in figure PSAD-016. Properties of C 310 x 45 A = 5680 mm² d = 305 mm t = 12.7 mm tw = 13.0 mm b = 80.5 mm x = 17.1 mm Determine the shear lag factor of the channel. Determine the effective net area of the section in mm². Compute the design capacity of the section.arrow_forwardPlease answer the following and show the step by step answer on clear paperarrow_forward
- Problem #1 (Beam optimization). Calculate the length "a" of AB such that the bending moment diagram is optimized (the absolute value of the max and the min is at its lowest). Then draw the shear and moment diagram for the optimized length. Optimize the length to the nearest 0.1 m. You can use RISA 2D as a tool to find the optimized length, however you need to solve for the support reactions at A, B and C by hand and draw the shear and moment diagram by hand. w=20 kN/m A + + a 12 m B Carrow_forward2. Using the Green-Ampt Model, compute the infiltration rate, f, and cumulative infiltration, F, after one hour of infiltration into a sandy clay loam soil. Assume initial moisture conditions are midway between the field capacity and wilting point and that water is ponded to a small but negligible depth on the surface.arrow_forwardAssignment 1 Q1) Determine the member end forces of the frames shown by utilizing structural symmetry and anti-symm. (Derive each member forces and show BMD,SD,AFD) 20 kN/m 40 kN/m C D Hinge Ẹ G A -3m 5m B 5 m 3 m- E, I, A constant 12 marrow_forward
- A1.3- Given the floor plan shown in Figure 3. The thickness of the slab is 150mm. The floor finish, ceiling and partition load is 1.8 kN/m². The live load on the floor is 2.4 kN/m². The beams cross section dimension is 300mmx600mm. Assuming the unit weight of concrete is equal to 24 kN/m². It is required to: a) Show tributary areas for all the beams on the plan; b) Calculate the load carried by beams B1 (on gridline A, between 1 and 3), B2 (on gridline B, between 1 and 3)and B3 (on gridline 3, between A and C); c) Calculate the load carried by column C1 per floor (ignore the self weight of the column). A 1 B1 2 B2 B Cl 8.0 m Figure 3 8.0 m B3 23 3 *2.0m 5.0 m 4.0 m +1.5m+arrow_forwardPlease show all steps and make sure to use the type of coordinate system (tangential/normal) specified.arrow_forwardFind required inlet length to intercept the entire flow and the capacity of a 3m long curb inlet. A gutter with z=20, n=0.015 and a slope of %1 caring a flow of 0.25 S m³/s curb depression (a=60 mm). Assume the only %75 of the upstream flow will be intercepted, what the length of curb inlet will be needed.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningEngineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning