The effect of altitude on the lungs. (a) Calculate the change in air pressure you will experience if you climb a 1000 m mountain, assuming that the temperature and air density do not change over this distance and that they were 22°C and 1.2 kg/m 3 , respectively, at the bottom of the mountain. (b) If you took a 0.50 L breath at the foot of the mountain and managed to hold it until you reached the top, what would be the volume of this breath when you exhaled it there?
The effect of altitude on the lungs. (a) Calculate the change in air pressure you will experience if you climb a 1000 m mountain, assuming that the temperature and air density do not change over this distance and that they were 22°C and 1.2 kg/m 3 , respectively, at the bottom of the mountain. (b) If you took a 0.50 L breath at the foot of the mountain and managed to hold it until you reached the top, what would be the volume of this breath when you exhaled it there?
The effect of altitude on the lungs. (a) Calculate the change in air pressure you will experience if you climb a 1000 m mountain, assuming that the temperature and air density do not change over this distance and that they were 22°C and 1.2 kg/m3, respectively, at the bottom of the mountain. (b) If you took a 0.50 L breath at the foot of the mountain and managed to hold it until you reached the top, what would be the volume of this breath when you exhaled it there?
4.36 ... CP An advertisement claims that a particular automobile can
"stop on a dime." What net force would be necessary to stop a 850 kg
automobile traveling initially at 45.0 km/h in a distance equal to the di-
ameter of a dime, 1.8 cm?
4.46
The two blocks in Fig. P4.46 are connected
by a heavy uniform rope with a mass of 4.00 kg. An up-
ward force of 200 N is applied as shown. (a) Draw three
free-body diagrams: one for the 6.00 kg block, one for
B
the 4.00 kg rope, and another one for the 5.00 kg block. For each force,
indicate what object exerts that force. (b) What is the acceleration of the
system? (c) What is the tension at the top of the heavy rope? (d) What is
the tension at the midpoint of the rope?
Figure P4.46
F= 200 N
4.00 kg
6.00 kg
5.00 kg
4.35 ⚫ Two adults and a child want to push a wheeled cart in the direc-
tion marked x in Fig. P4.35 (next page). The two adults push with hori-
zontal forces F and F as shown. (a) Find the magnitude and direction of
the smallest force that the child should exert. Ignore the effects of friction.
(b) If the child exerts the minimum force found in part (a), the cart ac-
celerates at 2.0 m/s² in the +x-direction. What is the weight of the cart?
Figure P4.35
F₁ = 100 N
60°
30°
F2 = 140 N
Chapter 15 Solutions
Masteringphysics With Pearson Etext - Valuepack Access Card - For College Physics
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.