Concept explainers
In 2003, an earthquake in Japan generated 1.1 Hz waves that traveled outward at 7.0 km/s. 200 km to the west, seismic instruments recorded a maximum acceleration of 0.25g along the east-west axis.
a. How much time elapsed between the earthquake and the first detection of the waves?
b. Was this a transverse or a longitudinal wave?
c. What was the wavelength?
d. What was the maximum horizontal displacement of the ground as the wave passed?
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
College Physics: A Strategic Approach (4th Edition)
Additional Science Textbook Solutions
Essential University Physics (3rd Edition)
Life in the Universe (4th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Essential University Physics: Volume 1 (3rd Edition)
College Physics
Conceptual Physics (12th Edition)
- An undersea earthquake or a landslide can produce an ocean wave of short duration carrying great energy, called a tsunami. When its wavelength is large compared to the ocean depth d, the speed of a water wave is given approximately by v=gd. Assume an earthquake occurs all along a tectonic plate boundary running north to south and produces a straight tsunami wave crest moving everywhere to the west. (a) What physical quantity can you consider to be constant in the motion of any one wave crest? (b) Explain why the amplitude of the wave increases as the wave approaches shore. (c) If the wave has amplitude 1.80 m when its speed is 200 m/s, what will be its amplitude where the water is 9.00 m deep? (d) Explain why the amplitude at the shore should be expected to be still greater, but cannot be meaningfully predicted by your model.arrow_forwardA sound wave is modeled with the wave function P=1.20Pasin(kx6.28104s1t) and the sound wave travels in air at a speed of v=343.00 m/s. (a) What is the wave number of the sound wave? (b) What is the value for P(3.00 m, 20.00 s)?arrow_forward(a) If a long rope is hung from a ceiling and waves are sent up the rope from its lower end, why does the speed of the waxes change as they ascend? (b) Does the speed of the ascending waves increase or decrease? Explain.arrow_forward
- The displacement of the air molecules in sound wave is modeled with the wave function s(x,t)=5.00nmcos(91.54m1x3.14104s1t) . (a) What is the wave speed of the sound wave? (b) What is the maximum speed of the air molecules as they oscillate in simple harmonic motion? (c) What is the magnitude of the maximum acceleration of the air molecules as they oscillate in simple harmonic motion?arrow_forwardProblems 32 and 33 are paired. N Seismic waves travel outward from the epicenter of an earthquake. A single earthquake produces both longitudinal seismic waves known as P waves and transverse waves known as S waves. Both transverse and longitudinal waves can travel through solids such as rock. Longitudinal waves can travel through fluids, whereas transverse waves can only be sustained near the surface of a fluid, not inside the fluid. When seismic waves encounter a fluid medium such as the liquid outer core of the Earth, only the longitudinal P wave can propagate through. Geophysicists can model the interior of the Earth by knowing where and when S and P waves were detected by seismographs after an earthquake (Fig. P17.32). Assume the average speed of an S wave through the Earths mantle is 5.4 km/s and the average speed of a P wave is 9.3 km/s. After an earthquake, a seismograph finds that the P wave arrives 1.5 min before the S wave. How far is the epicenter from the detector? FIGURE P17.32arrow_forwardA sound wave propagates in air at 27C with frequency 4.00 kHz. It passes through a region where the temperature gradually changes and then moves through air at 0C. Give numerical answers to the following questions to the extent possible and state your reasoning about what happens to the wave physically. (a) What happens to the speed of the wave? (b) What happens to its frequency? (c) What happens to its wavelength?arrow_forward
- Earthquakes at fault lines in the Earths crust create seismic waves, which are longitudinal (P waves) or transverse (S waves). The P waves have a speed of about 7 km/s. Estimate the average bulk modulus of the Earths crust given that the density of rock is about 2 500 kg/m3.arrow_forwardOcean waves with a crest-to-crest distance of 10.0 m can be described by the wave function y(x, t) = 0.800 sin [0.628(x - t)] where x and y are in meters, t is in seconds, and = 1.20 m/s. (a) Sketch y(x, t) at t = 0. (b) Sketch y(x, t) at t = 2.00 s. (c) Compare the graph in part (b) with that for part (a) and explain similarities and differences. (d) How has the wave moved between graph (a) and graph (b)?arrow_forwardSuppose an observer and a source of sound are both at rest relative to the ground and a strong wind is blowing away from the source toward the observer, (i) What effect does the wind have 011 the observed frequency? (a) It causes an increase. (b) It causes a decrease. (c) It causes on change. (ii) What effect does the wind have on the observed wavelength? Choose from the same possibilities as in part (i). (iii) What effect does the wind have on the observed speed of the wave? Choose from the same possibilities as in part (i).arrow_forward
- You are working on a senior project and are analyzing a human wave at a sports stadium such as that shown in Figure P16.4 (page 446). You are trying to determine the effect of the wave on concession sales because people are standing up and sitting down while they participate in the wave, instead of buying food or drinks. You have made observations at a local stadium and have taken data on one particularly stable wave. This wave took 47.4 s to travel around a specific stadium row consisting of a circular ring of 974 seats. You also find that a typical time interval for spectators to stand and sit back down is 0.95 s. In this wave, how many people in the specific row were out of their seats at any given instant? Figure P16.4 Problems 4 and 44.arrow_forwardAn airplane moves at Mach 1.2 and produces a shock wave. (a) What is the speed of the plane in meters per second? (b) What is the angle that the shock wave moves?arrow_forwardA harmonic transverse wave function is given by y(x, t) = (0.850 m) sin (15.3x + 10.4t) where all values are in the appropriate SI units. a. What are the propagation speed and direction of the waves travel? b. What are the waves period and wavelength? c. What is the amplitude? d. If the amplitude is doubled, what happens to the speed of the wave?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning