A drinking straw 20 cm long and 3.0 mm in diameter stands vertically in a cup of juice 8.0 cm in diameter. A section of straw 6.5 cm long extends above the juice. A child sucks on the straw, and the juice level begins dropping at 2.0 mm/s. (a) By how much does the pressure in the child’s mouth differ from atmospheric pressure? (b) What’s the greatest height above the water surface from which the child could drink, assuming this same mouth pressure?
A drinking straw 20 cm long and 3.0 mm in diameter stands vertically in a cup of juice 8.0 cm in diameter. A section of straw 6.5 cm long extends above the juice. A child sucks on the straw, and the juice level begins dropping at 2.0 mm/s. (a) By how much does the pressure in the child’s mouth differ from atmospheric pressure? (b) What’s the greatest height above the water surface from which the child could drink, assuming this same mouth pressure?
A drinking straw 20 cm long and 3.0 mm in diameter stands vertically in a cup of juice 8.0 cm in diameter. A section of straw 6.5 cm long extends above the juice. A child sucks on the straw, and the juice level begins dropping at 2.0 mm/s. (a) By how much does the pressure in the child’s mouth differ from atmospheric pressure? (b) What’s the greatest height above the water surface from which the child could drink, assuming this same mouth pressure?
4. In the figure below what is the value of the angle 0?
A
30
PLEASE help with the experimental setup for this theory because i am so confused.
Part 2 - Geometry and Trigonometry
1. Line B touches the circle at a single point. Line A extends radially through the center of
the circle.
A
B
(a) Which line is tangential to the circumference of the circle?
(b) What is the angle between lines A and B.
2. In the figure below what is the angle C?
30
45
3. In the figure below what is the value of the angle 0?
30°
4. In the figure below what is the value of the angle 0?
A
30°
Chapter 15 Solutions
Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.