Concept explainers
In 2012, film producer James Cameron (Terminator, Titanic, Avatar) rode his submersible Deepsea Challenger to the bottom of the 11-km-deep Marianas Trench, the deepest spot in Earth’s oceans. Cameron could barely fit into Deepsea Challenger’s crew compartment, a steel sphere with inside diameter 109 cm and walls 6.4 cm thick. Find the total pressure force exerted on the sphere at the bottom of the trench. (The total force is the sum of all pressure forces without regard to direction; it’s not the same as the buoyancy force, which is the net pressure force—a vectorial sum.)
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
Additional Science Textbook Solutions
Introductory Chemistry (6th Edition)
Applications and Investigations in Earth Science (9th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Concepts of Genetics (12th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Anatomy & Physiology (6th Edition)
- A spherical submersible 2.00 m in radius, armed with multiple cameras, descends under water in a region of the Atlantic Ocean known for shipwrecks and finds its first shipwreck at a depth of 1.75 103 m. Seawater has density 1.03 103 kg/m3, and the air pressure at the oceans surface is 1.013 105 Pa. a. What is the absolute pressure at the depth of the shipwreck? b. What is the buoyant force on the submersible at the depth of the shipwreck?arrow_forwardThe gravitational force exerted on a solid object is 5.00 N. When the object is suspended from a spring scale and submerged in water, the scale reads 3.50 N (Fig. P15.24). Find the density of the object. Figure P15.24 Problems 24 and 25.arrow_forwardA tank with a flat bottom of area A and vertical sides is filled to a depth h with water. The pressure is P0 at the top surface. (a) What is the absolute pressure at the bottom of the tank? (b) Suppose an object of mass M and density less than the density of water is placed into the tank and floats. No water overflows. What is the resulting increase in pressure at the bottom of the tank?arrow_forward
- (a) Calculate the absolute pressure at an ocean depth of 1 000 m. Assume the density of seawater is 1 030 kg/m3 and the air above exerts a pressure of 101.3 kPa. (b) At this depth, what is the buoyant force on a spherical submarine having a diameter of 5.00 m?arrow_forwardA manometer is shown in Figure P15.36. Rank the pressures at the five locations indicated from highest to lowest. Indicate equal pressures, if any. FIGURE P15.36arrow_forwardA table-tennis ball has a diameter of 3.80 cm and average density of 0.084 0 g/cm3. What force is required to hold it completely submerged under water?arrow_forward
- How tall must a water-filled manometer be to measure blood pressures as high as 300 mm Hg?arrow_forwardAn 81.5kg man stands on a horizontal surface. (a) What is the volume of the mans body if his average density is 985 kg/m3? (b) What average pressure from his weight is exerted on the horizontal surface. If the mans two feet have a combined area of 4.50 109 m3?arrow_forwardA 1.00-kg beaker containing 2.00 kg of oil (density = 916.0 kg/m3) rests on a scale. A 2.00-kg block of iron suspended from a spring scale is completely submerged in the oil as shown in Figure P15.63. Determine the equilibrium readings of both scales. Figure P15.63 Problems 63 and 64.arrow_forward
- A tank with a flat bottom of area A and vertical sides is filled to a depth h with water. The pressure is P0 at the top surface. (a) What is the absolute pressure at the bottom of the tank? (b) Suppose an object of mass M and density less than the density of water is placed into the tank and floats. No water overflows. What is the resulting increase in pressure at the bottom of the tank?arrow_forwardFigure P15.52 shows a Venturi meter, which may be used to measure the speed of a fluid. It consists of a Venturi tube through which the fluid moves and a manometer used to measure the pressure difference between regions 1 and 2. The fluid of density tube moves from left to right in the Venturi tube. Its speed in region 1 is v1, and its speed in region 2 is v2. The necks cross-sectional area is A2, and the cross-sectional area of the rest of the tube is A1. The manometer contains a fluid of density mano. a. Do you expect the fluid to be higher on the left side or the right side of the manometer? b. The speed v2 of the fluid in the neck comes from measuring the difference between the heights (yR yL) of the fluid on the two sides of manometer. Derive an expression for v2 in terms of (yR yL), A1, A2, tube, and mano. FIGURE P15.52arrow_forwardA hollow copper (Cu = 8.92 103 kg/m3) spherical shell of mass m = 0.950 kg floats on water with its entire volume below the surface. a. What is the radius of the sphere? b. What is the thickness of the shell wall?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning