(a)
Interpretation:
The new molarity after the addition of water is to be calculated.
Concept Introduction:
The
The number of moles is calculated by the formula,
The molarity is calculated by the formula,
Answer to Problem 56QAP
The new molarity that results when
Explanation of Solution
The initial volume and molarity of
The conversion of units of
The number of moles of a solute is calculated by the formula,
Substitute the values of initial volume and molarity of
It is given that
The conversion of units of
Thus, the total volume is calculated by the formula,
Substitute the values of initial volume and volume of water added in the equation (2).
The new molarity of the solution is calculated by the formula,
Substitute the values of number of moles of solute and final volume in the equation (3).
Therefore, the new molarity that results when
(b)
Interpretation:
The new molarity after the addition of water is to be calculated.
Concept Introduction:
The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.
The number of moles is calculated by the formula,
The molarity is calculated by the formula,
Answer to Problem 56QAP
The new molarity that results when
Explanation of Solution
The initial volume and molarity of
The conversion of units of
The number of moles of a solute is calculated by the formula,
Substitute the values of initial volume and molarity of
It is given that
The conversion of units of
Thus, the total volume is calculated by the formula,
Substitute the values of initial volume and volume of water added in the equation (2).
The new molarity of the solution is calculated by the formula,
Substitute the values of number of moles of solute and final volume in the equation (3).
Therefore, the new molarity that results when
(c)
Interpretation:
The new molarity after the addition of water is to be calculated.
Concept Introduction:
The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.
The number of moles is calculated by the formula,
The molarity is calculated by the formula,
Answer to Problem 56QAP
The new molarity that results when
Explanation of Solution
The initial volume and molarity of
The number of moles of a solute is calculated by the formula,
Substitute the values of initial volume and molarity of
It is given that
The conversion of units of
Thus, the total volume is calculated by the formula,
Substitute the values of initial volume and volume of water added in the equation (2).
The new molarity of the solution is calculated by the formula,
Substitute the values of number of moles of solute and final volume in the equation (3).
Therefore, the new molarity that results when
(d)
Interpretation:
The new molarity after the addition of water is to be calculated.
Concept Introduction:
The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.
The number of moles is calculated by the formula,
The molarity is calculated by the formula,
Answer to Problem 56QAP
The new molarity that results when
Explanation of Solution
The initial volume and molarity of
The conversion of units of
The number of moles of a solute is calculated by the formula,
Substitute the values of initial volume and molarity of
It is given that
The conversion of units of
Thus, the total volume is calculated by the formula,
Substitute the values of initial volume and volume of water added in the equation (2).
The new molarity of the solution is calculated by the formula,
Substitute the values of number of moles of solute and final volume in the equation (3).
Therefore, the new molarity that results when
Want to see more full solutions like this?
Chapter 15 Solutions
Student Solutions Manual for Zumdahl/DeCoste's Introductory Chemistry: A Foundation, 9th
- (12) Which one of the following statements about fluo- rometry is FALSE? a) Fluorescence is better detected at 90 from the exci- tation direction. b) Fluorescence is typically shifted to longer wave- length from the excitation wavelength. c) For most fluorescent compounds, radiation is pro- duced by a transitionarrow_forwardDon't used Ai solutionarrow_forwardDon't used Ai solutionarrow_forward
- Don't used Ai solutionarrow_forwardIndicate the correct option.a) Graphite conducts electricity, being an isotropic materialb) Graphite is not a conductor of electricityc) Both are falsearrow_forward(f) SO: Best Lewis Structure 3 e group geometry:_ shape/molecular geometry:, (g) CF2CF2 Best Lewis Structure polarity: e group arrangement:_ shape/molecular geometry: (h) (NH4)2SO4 Best Lewis Structure polarity: e group arrangement: shape/molecular geometry: polarity: Sketch (with angles): Sketch (with angles): Sketch (with angles):arrow_forward
- 1. Problem Set 3b Chem 141 For each of the following compounds draw the BEST Lewis Structure then sketch the molecule (showing bond angles). Identify (i) electron group geometry (ii) shape around EACH central atom (iii) whether the molecule is polar or non-polar (iv) (a) SeF4 Best Lewis Structure e group arrangement:_ shape/molecular geometry: polarity: (b) AsOBr3 Best Lewis Structure e group arrangement:_ shape/molecular geometry: polarity: Sketch (with angles): Sketch (with angles):arrow_forward(c) SOCI Best Lewis Structure 2 e group arrangement: shape/molecular geometry:_ (d) PCls Best Lewis Structure polarity: e group geometry:_ shape/molecular geometry:_ (e) Ba(BrO2): Best Lewis Structure polarity: e group arrangement: shape/molecular geometry: polarity: Sketch (with angles): Sketch (with angles): Sketch (with angles):arrow_forwardDon't used Ai solutionarrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning