Concept explainers
For standard tuning, concert A is defined to have a frequency of 440 Hz. On a piano. A is five white keys above C, but 9 half steps above C counting both the white and black keys. (See fig. 15.22.) A full octave consists of 12 half steps (semitones). In equally tempered tuning, each half step has the ratio of 1.0595 above the preceding step. (This ratio is the 12th root of 2.0.)
a. What is the frequency of A-flat, one half step below A for equal temperament?
b. Working down, find the frequency of each succeeding half step until you get down to C. (Carry your computations to four figures, to avoid rounding errors. For each half step, divide by 1.0595.)
c. In just tuning, middle C has a frequency of 264 Hz. How does your result in part b compare to this value?
d. Working up, find the frequency of C above concert A in equal temperament. Is this frequency twice that obtained in part b for middle C?
(a)
What is the frequency of A-flat.
Answer to Problem 4SP
The frequency of A flat is
Explanation of Solution
Given info: The frequency of A is
Write the formula to calculate the frequency of A flat.
Here,
f is the frequency of A
Substitute
Conclusion:
Therefore, the frequency of A flat is
(b)
Find the each succeeding half up to reach C.
Answer to Problem 4SP
The succeeding frequencies are
Explanation of Solution
Given info: The frequency of A is
Since C is the 9 half steps below A, to find the succeeding frequencies divide the frequency of A by 1.0595 to get the one step below of A and go on up to nine times. The 9th frequency is corresponding to the frequency of C.
The succeeding frequencies are
Conclusion:
Therefore, the succeeding frequencies are
(c)
Compare the given tuned frequency of C with part (b).
Answer to Problem 4SP
The difference in frequency is
Explanation of Solution
Given Info: The tuned frequency of C is
Write the expression to calculate the difference between the tuned frequency of C with calculated.
Here,
Substitute
Conclusion:
Therefore, the difference in frequency is
(d)
The frequency of C above A and will this frequency is twice as compared with part (b).
Answer to Problem 4SP
The frequency of C is
Explanation of Solution
Given info: The frequency of A is
In this case the C is five keys above A including white and black keys and three keys above without including black keys or halves. Therefore to find the frequency of C, the frequency of A is multiplied by the value 1.0595 by three times.
Therefore the frequency of C is
Conclusion:
Therefore, the frequency of C is
Want to see more full solutions like this?
Chapter 15 Solutions
EBK PHYSICS OF EVERYDAY PHENOMENA
- Find the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d Ag = 2.51 dFe ×arrow_forwardShow that the units 1 v2/Q = 1 W, as implied by the equation P = V²/R. Starting with the equation P = V²/R, we can get an expression for a watt in terms of voltage and resistance. The units for voltage, V, are equivalent to [? v2 v2 A, are equivalent to J/C ✓ X . Therefore, 1 = 1 = 1 A V1 J/s Ω V-A X = 1 W. . The units for resistance, Q, are equivalent to ? The units for current,arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- What is the equivalent resistance between points A and B of the network shown in the figure? A • 12 B 4.0 6.0 Ω 8.0 Ωarrow_forwardAccording to the provided information answer the question accorrding to grade 11 physics Jerry has decided to give up his part-time job for a new career, cat-burglar! Jerry loves the idea of dressing up like a cat all day and of course the chance of meeting Cat Woman! On Jerry's first "job" he figures out his escape plan. He travels 3.0 km south for 15 minutes and then 8.0 km west for 1.5 hours before reaching his house. Draw a sketch diagram of the path he took with all the appropriate labels.arrow_forwardPlease solve and answer all parts of the question correctly please. Thank you!!arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill