(a)
The sketch of the fundamental standing wave for the pipe.
(a)
Answer to Problem 3SP
The sketch of the fundamental standing wave for the pipe is given in figure 1.
Explanation of Solution
Given info: The length of the pipe is
Following figure gives the standing wave pattern of the fundamental standing wave for the pipe whose length is
Figure 1
The nodes are the point where two waves cancel each other and no motion occurs. The anti-nodes are the points of maximum amplitude.
Conclusion:
Therefore, the sketch of the fundamental standing wave for the pipe is given in figure 1.
(b)
The wavelength of the sound wave that interfere to form the fundamental wave.
(b)
Answer to Problem 3SP
The wavelength of the sound wave that interfere to form the fundamental wave is
Explanation of Solution
Write the expression to calculate the fundamental wavelength inside the pipe.
Here,
L is the length of the pipe
Substitute
Conclusion:
Therefore, the wavelength of the sound wave that interfere to form the fundamental wave is
(c)
The frequency of the sound wave.
(c)
Answer to Problem 3SP
The frequency of the sound wave is
Explanation of Solution
Write the expression to calculate the speed of the sound wave.
Here,
f is the frequency of the sound wave
Substitute
Conclusion:
Therefore, the frequency of the sound wave is
(d)
The change in frequency of the sound wave.
(d)
Answer to Problem 3SP
The change in frequency of the sound wave is
Explanation of Solution
Write the expression to calculate the speed of the sound wave.
Here,
Substitute
Write the formula to calculate the frequency change for the sound wave.
Here,
Substitute
Conclusion:
Therefore, the change in frequency of the sound wave is
(e)
The sketch of the second harmonic and its wavelength and frequency.
(e)
Answer to Problem 3SP
The sketch of the second harmonic is given in the figure 2 and its wavelength is
Explanation of Solution
For the second harmonic, the frequency is twice as that of the fundamental standing-wave and wavelength is half of that value of the fundamental standing wave. Therefore the frequency of the second harmonic wave is
The sketch of the second harmonic wave is shown below.
Figure 2
Conclusion:
Therefore, the sketch of the second harmonic is given in the figure 2 and its wavelength is
Want to see more full solutions like this?
Chapter 15 Solutions
EBK PHYSICS OF EVERYDAY PHENOMENA
- No chatgpt pls will upvotearrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward་ The position of a particle is described by r = (300e 0.5t) mm and 0 = (0.3t²) rad, where t is in seconds. Part A Determine the magnitude of the particle's velocity at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer Part B ? Units Determine the magnitude of the particle's acceleration at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. a = Value A ? Unitsarrow_forward
- Solve and answer the question correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forwardA spiral transition curve is used on railroads to connect a straight portion of the track with a curved portion. (Figure 1) Part A v = v₁ft/s 600 ft y = (106) x³ If the spiral is defined by the equation y = (106)³, where x and y are in feet, determine the magnitude of the acceleration of a train engine moving with a constant speed of v₁ = 30 ft/s when it is at point x = 600 ft. Express your answer to three significant figures and include the appropriate units. ? a = Value Unitsarrow_forward
- When the motorcyclist is at A, he increases his speed along the vertical circular path at the rate of = (0.3t) ft/s², where t is in seconds. Take p = 360 ft. (Figure 1) Part A 60° Ρ B If he starts from rest at A, determine the magnitude of his velocity when he reaches B. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer ་ Part B ? Units If he starts from rest at A, determine the magnitude of his acceleration when he reaches B. Express your answer to three significant figures and include the appropriate units. 11 ? a = Value Unitsarrow_forwardThe car starts from rest at s = 0 and increases its speed at a₁ = 7 m/s². (Figure 1) Part A = 40 m Determine the time when the magnitude of acceleration becomes 20 m/s². Express your answer to three significant figures and include the appropriate units. ? t = Value Units Part B At what position s does this occur? Express your answer to three significant figures and include the appropriate units. s = Value Submit Request Answer ? Unitsarrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON