Concept explainers
(a)
To calculate:
Calculate the pressure amplitude of the wave.
(a)
Answer to Problem 47P
The pressure amplitude
Explanation of Solution
Given:
Pressure variation is given by,
Formula used:
The pressure amplitude can be calculated by using:
Where,
The pressure variation is given as,
Where,
From the inspection of the equation which is given,
The value of the
Conclusion:
Thus, the pressure amplitude
(b)
To calculate:
Calculate the wavelength of the wave.
(b)
Answer to Problem 47P
The wavelength
Explanation of Solution
Given:
Pressure variation is given by,
Formula used:
The wavelength can be calculated by using:
Where,
The pressure variation is given as,
Where,
As the value of the
Thus,
Conclusion:
Thus, the wavelength
(c)
To calculate:
Calculate the frequency of the wave.
(c)
Answer to Problem 47P
The frequency
Explanation of Solution
Given:
Pressure variation is given by,
Formula used:
Frequency,
Where,
The pressure variation is given as,
Where,
Solve
To get frequency,
Substitute the numerical values in the above equation,
Conclusion:
Thus, the frequency
(d)
To calculate:
Calculate the speed of the wave.
(d)
Answer to Problem 47P
The speed
Explanation of Solution
Given:
Pressure variation is given by,
Formula used:
The pressure variation is given as,
Where,
The pressure variation is given as,
From the inspection of the equation which is given,
The value of
Conclusion:
Thus, the speed
Want to see more full solutions like this?
Chapter 15 Solutions
Physics for Scientists and Engineers
- Two sinusoidal waves are moving through a medium in the positive x-direction, both having amplitudes of 7.00 cm, a wave number of k=3.00 m-1, an angular frequency of =2.50 s-1, and a period of 6.00 s, but one has a phase shift of an angle =12 rad. What is the height of the resultant wave at a time t=2.00 s and a position x=0.53 m?arrow_forwardTwo sinusoidal waves are moving through a medium in the same direction, both having amplitudes of 3.00 cm, a wavelength of 5.20 m, and a period of 6.52 s, but one has a phase shift of an angle . What is the phase shift if the resultant wave has an amplitude of 5.00 cm? [Hint: Use the trig identity sinu+sinv=2sin(u+v2)cos(uv2)arrow_forwardPorpoises emit sound waves that they use for navigation. If the wavelength of the sound wave emitted is 4.5 cm, and the speed of sound in the water is v=1530 m/s, what is the period of the sound?arrow_forward
- A sound wave traveling in air has a pressure amplitude of 0.5 Pa. What is the intensity of the wave?arrow_forwardA pipe is observed to have a fundamental frequency of 345 Hz. Assume the pipe is filled with air (v = 343 m/s). What is the length of the pipe if the pipe is a. closed at one end and b. open at both ends?arrow_forwardThe equation of a harmonic wave propagating along a stretched string is represented by y(x, t) = 4.0 sin (1.5x 45t), where x and y are in meters and the time t is in seconds. a. In what direction is the wave propagating? be. N What are the b. amplitude, c. wavelength, d. frequency, and e. propagation speed of the wave?arrow_forward
- A string with a mass of 0.30 kg has a length of 4.00 m. If the tension in the string is 50.00 N, and a sinusoidal wave with an amplitude of 2.00 cm is induced on the string, what must the frequency be for an average power of 100.00 W?arrow_forwardRank the waves represented by the following functions from the largest to the smallest according to (i) their amplitudes, (ii) their wavelengths, (iii) their frequencies, (iv) their periods, and (v) their speeds. If the values of a quantity are equal for two waves, show them as having equal rank. For all functions, x and y are in meters and t is in seconds. (a) y = 4 sin (3x 15t) (b) y = 6 cos (3x + 15t 2) (c) y = 8 sin (2x + 15t) (d) y = 8 cos (4x + 20t) (e) y = 7 sin (6x + 24t)arrow_forwardA sound wave in air at 20°C has a frequency of 320 Hz anda displacement amplitude of 5.00 * 10-3 mm. For this sound wavecalculate the (a) pressure amplitude (in Pa); (b) intensity (in W/m2);(c) sound intensity level (in decibels).arrow_forward
- The amplitude of a wave disturbance M20 (1 positive x-direction is given by y = Tetromabruts esd (1+x)² by y = 1 ad m travelling in the at time t = 0 and [1 + (x − 1)²] - at t = 2 s, where x and y are in metre. The shape of the wave disturbance does not change during the propagation. The velocity of the wave is...... m/s.arrow_forwardProblem 4: A traveling wave along the x-axis is given by the following wave functionψ(x, t) = 3.6 cos(1.4x - 9.2t + 0.34),where x in meter, t in seconds, and ψ in meters. Read off the appropriate quantities for this wave function and find the following characteristics of this plane wave: Part (a) The amplitude in meters. Part (b) The frequency, in hertz. Part (c) The wavelength in meters. Part (d) The wave speed, in meters per second. Part (e) The phase constant in radians.arrow_forwardA particular person's eardrum is circular, with a diameter of 9.00 mm. (a)How much sound energy (in J) is delivered to an eardrum in one second, at the threshold of human hearing? (The threshold of human hearing is taken to be 1.00 ✕ 10−12 W/m2.) J (b)How much sound energy (in J) is delivered to an eardrum in one second, at the pain threshold for human hearing? (The pain threshold occurs at 1.00 W/m2, one trillion times as intense as the lowest audible level.) J (c)Assume that musicians onstage are exposed to sound that is 10 decibels below the human pain threshold. Over the course of a two-hour concert, how much sound energy (in J) does each ear absorb onstage? Jarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning