Concept explainers
(a)
To calculate:
Calculate the derivative of speed of the sound in air as respect to absolute temperature.
(a)
Answer to Problem 34P
Derivative of the speed of the sound in air as respect to absolute temperature is
Explanation of Solution
Given:
Differentials
Formula used:
Calculation:
The speed of sound in a gas is given by
Where,
To estimate the percentage change in the speed of sound if the temperature increases from
For evaluating the
Now, to separate the variables to obtain,
Conclusion:
Derivative of the speed of the sound in air as respect to absolute temperature is
(b)
To calculate:
The percentage change in speed of the sound when temperature changes from
(b)
Answer to Problem 34P
The percentage change in speed of the sound when temperature changes from
Explanation of Solution
Given:
Differentials
Temperature
Temperature
Formula used:
Calculation:
The given equation is:
First differentiate the expression with respect to
To estimate the percentage change in the speed of sound if the temperature increases from
Approximate the
Put the numerical values to get,
Conclusion:
Thus, the percentage change in speed of the sound when temperature changes from
(c)
To calculate:
Calculate the value at
(c)
Answer to Problem 34P
The value at
Explanation of Solution
Given:
Speed of the sound
Temperature
Formula used:
Calculation:
According to the question,
Using the differential approximation, approximate the speed of sound at
Now, put the numerical values and evaluate the
Conclusion:
Thus, the value at
(d)
To explain:
Calculate an approximation comparison with result of an exact calculation.
(d)
Answer to Problem 34P
Approximation comparison with result of an exact calculation
Explanation of Solution
Given:
Speed of the sound
Temperature
Formula used:
The speed of sound wave at the absolute temperature is:
Here,
- Molecular mass of hydrogen:
Constant (hydrogen is diatomic gas):
Absolute temperature:
Gas constant:
Calculation:
The speed of sound wave at the temperature
The speed of sound wave at the temperature
Now, divide the first of these equations by the second and solve for
And,
Conclusion:
Approximation comparison with result of an exact calculation
Want to see more full solutions like this?
Chapter 15 Solutions
Physics for Scientists and Engineers
- What is the length of a tube that has a fundamental frequency of 176 Hz and a first overtone of 352 Hz if the speed of sound is 343 m/s?arrow_forwardWhat frequency is received by a mouse just before being dispatched by a hawk flying at it at 25.0 m/s and emitting a screech of frequency 3500 Hz? Take the speed of sound to be 331 m/s.arrow_forwardA sunbather stands waist deep in the ocean and observes that six crests of periodic surface waves pass each minute. The crests are 16.00 meters apart. What is the wavelength, frequency, period, and speed of the waves?arrow_forward
- What is the difference between propagation speed and the frequency of a mechanical wave? Does one or both affect wavelength? If so, how?arrow_forwardBy what fraction will the frequencies produced by a wind instrument change when air temperature goes from 10.0°C to 30.0°C ? That is, find the ratio of the frequencies at those temperatures.arrow_forwardCheck Your Understanding Describe how amplitude is related to the loudness of a sound.arrow_forward
- When poked by a spear, an operatic soprano lets out a 1200-Hz shriek. What is its wavelength if the speed of sound is 345 m/s?arrow_forwardThe energy of a ripple on a pond is proportional to the amplitude squared. If the amplitude of the ripple is 0.1 cm at a distance from the source of 6.00 meters, what was the amplitude at a distance of 2.00 meters from the source?arrow_forwardConsider a sound wave moving through the air modeled with the equation s(x,t)=6.00nmcos(54.93m1x18.84103s1t) . What is the shortest time required for an air molecule to move between 3.00 nm and -3.00 nm?arrow_forward
- A microphone receiving a pure sound tone feeds an oscilloscope, producing a wave on its screen. If the sound intensity is originally 2.00105W/m2 , but is turned up until the amplitude increases by 30.0% , what is the new intensity?arrow_forwardSound waves can be modeled as a change in pressure. Why is the change in pressure used and not the actual pressure?arrow_forwardThe factor of 10-12 in the range of intensities to which the ear can respond, from threshold to that causing damage after brief exposure, is truly remarkable. If you could measure distances over the same range with a single instrument and the smallest distance you could measure was 1 mm, what would the largest be?arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill