Physics for Scientists and Engineers
Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
Question
Book Icon
Chapter 15, Problem 36P
To determine

Find the correct options which satisfy the wave equation:

    (a) y(x,t)=k(x+vt)3

    (b) y(x,t)=Aeik(x-vt)

    (c) y(x,t)=ln[k(x-vt)]

Expert Solution & Answer
Check Mark

Answer to Problem 36P

Option (a), (b) and (c) are correct as it satisfies the general wave equation that is 2y/x22y/t2=1v2 .

Explanation of Solution

Given:

Equation:

  1. y(x,t)=k(x+vt)3 .
  2. y(x,t)=Aeik(x-vt)
  3. y(x,t)=ln[k(x-vt)]

Calculation:

To show the given function satisfies the wave equation.

The wave equation:

  2yx2=(1v2)2yt2

So, initially need to find their first and second derivatives with respect to x and

t and then substitute these derivatives in the wave equation.

The first two spatial derivatives of y(x,t)=k(x+vt)3 ,

  yx=3k(x+vt)2

And

  2yx2=6k(x+vt) …….(1)

Now, first two temporal derivatives of y(x,t)=k(x+vt)3 ,

  yt=3kv(x+vt)2

And

  2yt2=6kv2(x+vt) ……(2)

The ratio of the equation (1) to equation (2) is,

   2 y x 2 2 y t 2 =6k( x+vt) 6kv2( x+vt) 2 y x 2 2 y t 2 =1v2

Thus, option (a) is correct answer as it is confirming that y(x,t)=k(x+vt)3 satisfies the general wave equation.

Option (b) is correct answer as it is confirming that y(x,t)=Aeik(x-vt) satisfies the general wave equation.

Reason:

Find the first two spatial derivatives of y(x,t)=Aeik(x-vt) ,

  yx=ikAeik(x-vt) , 2yx2=i2k2Aeik(x-vt)

Or

  2yx2=-k2Aeik(x-vt) ……(1).

Now, first two temporal derivatives of y(x,t)=Aeik(x-vt) ,

  yt=-ikvAeik(x-vt) , 2yt2=i2k2Aeik(x-vt)

Or     2yt2=-k2v2Aeik(x-vt) ……(2).

The ratio of the equation (1) to equation (2) is,

   2 y x 2 2 y t 2 = -k2 Ae ik( x-vt ) -k2v2 Ae ik( x-vt ) 2 y x 2 2 y t 2 =1v2

Thus, confirming that y(x,t)=Aeik(x-vt) satisfies the general wave equation.

Option (c) is correct answer as it is confirming that y(x,t)=ln[k(x-vt)] satisfies the general wave equation.

Reason:

first two spatial derivatives of y(x,t)=ln[k(x-vt)] ,

  yx=kx-vt , 2yx2=k2( x-vt)2 …….(1)

Now, first two temporal derivatives of y(x,t)=ln[k(x-vt)] ,

  yt=vkx-vt , 2yt2=v2k2( x-vt)2 …….(2)

The ratio of the equation (1) to equation (2) is,

   2 y x 2 2 y t 2 = k 2 ( x-vt ) 2 v 2 k 2 ( x-vt ) 2 2 y x 2 2 y t 2 =1v2

Thus, confirming that y(x,t)=ln[k(x-vt)] satisfies the general wave equation.

Conclusion:

Thus, all three options satisfy the given general wave equation that is 2y/x22y/t2=1v2 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
dy 2ху The integrating factor of * dx 4x is 1+x2 1+x2 O4x2 O 1+ x² -4x2 2x
The electric field intensity in the region 0 <.x < 5, 0
dl L = U- RI dt Solve this equation for I(t) with I(0) =lo. What is I(t) as t approaches infinity?

Chapter 15 Solutions

Physics for Scientists and Engineers

Ch. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Prob. 13PCh. 15 - Prob. 14PCh. 15 - Prob. 15PCh. 15 - Prob. 16PCh. 15 - Prob. 17PCh. 15 - Prob. 18PCh. 15 - Prob. 19PCh. 15 - Prob. 20PCh. 15 - Prob. 21PCh. 15 - Prob. 22PCh. 15 - Prob. 23PCh. 15 - Prob. 24PCh. 15 - Prob. 25PCh. 15 - Prob. 26PCh. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - Prob. 29PCh. 15 - Prob. 30PCh. 15 - Prob. 31PCh. 15 - Prob. 32PCh. 15 - Prob. 33PCh. 15 - Prob. 34PCh. 15 - Prob. 35PCh. 15 - Prob. 36PCh. 15 - Prob. 37PCh. 15 - Prob. 38PCh. 15 - Prob. 39PCh. 15 - Prob. 40PCh. 15 - Prob. 41PCh. 15 - Prob. 42PCh. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - Prob. 45PCh. 15 - Prob. 46PCh. 15 - Prob. 47PCh. 15 - Prob. 48PCh. 15 - Prob. 49PCh. 15 - Prob. 50PCh. 15 - Prob. 51PCh. 15 - Prob. 52PCh. 15 - Prob. 53PCh. 15 - Prob. 54PCh. 15 - Prob. 55PCh. 15 - Prob. 56PCh. 15 - Prob. 57PCh. 15 - Prob. 58PCh. 15 - Prob. 59PCh. 15 - Prob. 60PCh. 15 - Prob. 61PCh. 15 - Prob. 62PCh. 15 - Prob. 63PCh. 15 - Prob. 64PCh. 15 - Prob. 65PCh. 15 - Prob. 66PCh. 15 - Prob. 67PCh. 15 - Prob. 68PCh. 15 - Prob. 69PCh. 15 - Prob. 70PCh. 15 - Prob. 71PCh. 15 - Prob. 72PCh. 15 - Prob. 73PCh. 15 - Prob. 74PCh. 15 - Prob. 75PCh. 15 - Prob. 76PCh. 15 - Prob. 77PCh. 15 - Prob. 78PCh. 15 - Prob. 79PCh. 15 - Prob. 80PCh. 15 - Prob. 81PCh. 15 - Prob. 82PCh. 15 - Prob. 83PCh. 15 - Prob. 84PCh. 15 - Prob. 85PCh. 15 - Prob. 86PCh. 15 - Prob. 87PCh. 15 - Prob. 88PCh. 15 - Prob. 89PCh. 15 - Prob. 90PCh. 15 - Prob. 91PCh. 15 - Prob. 92PCh. 15 - Prob. 93PCh. 15 - Prob. 94PCh. 15 - Prob. 95PCh. 15 - Prob. 96PCh. 15 - Prob. 97PCh. 15 - Prob. 98PCh. 15 - Prob. 99PCh. 15 - Prob. 100PCh. 15 - Prob. 101PCh. 15 - Prob. 102PCh. 15 - Prob. 103PCh. 15 - Prob. 104P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning