EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 15, Problem 47P

(a)

To determine

To calculate:

Calculate the pressure amplitude of the wave.

(a)

Expert Solution
Check Mark

Answer to Problem 47P

The pressure amplitude (p0) of the wave is 0.75Pa .

Explanation of Solution

Given:

Pressure variation is given by,

  p(x,t)=0.75cos[π2(x-343t)]

Formula used:

The pressure amplitude can be calculated by using:

  p(x,t)=0.75cos[π2(x-343t)]

Where,

  k= Wave number

  p0= Pressure amplitude,

  v= Wave speed

The pressure variation is given as, p(x,t)=0.75cos[π2(x-343t)]

Where,

  k= Wave number

  p0= Pressure amplitude,

  v= Wave speed

From the inspection of the equation which is given,

  p(x,t)=0.75cos[π2(x-343t)]

The value of the p0=0.75Pa

Conclusion:

Thus, the pressure amplitude (p0) of the wave is 0.75Pa .

(b)

To determine

To calculate:

Calculate the wavelength of the wave.

(b)

Expert Solution
Check Mark

Answer to Problem 47P

The wavelength (λ) of the wave is 4.00m .

Explanation of Solution

Given:

Pressure variation is given by,

  p(x,t)=0.75cos[π2(x-343t)] .

Formula used:

The wavelength can be calculated by using:

  p(x,t)=0.75cos[π2(x-343t)]

Where,

  k= Wave number

  p0= Pressure amplitude

  v= Wave speed

The pressure variation is given as,

  p(x,t)=0.75cos[π2(x-343t)]

Where,

  k= Wave number

  p0= Pressure amplitude

  v= Wave speed

As the value of the k ,

  k=λ=π2

Thus, λ=4.00m

Conclusion:

Thus, the wavelength (λ) of the wave is 4.00m .

(c)

To determine

To calculate:

Calculate the frequency of the wave.

(c)

Expert Solution
Check Mark

Answer to Problem 47P

The frequency (f) of the wave is 85.8Hz .

Explanation of Solution

Given:

Pressure variation is given by,

  p(x,t)=0.75cos[π2(x-343t)] .

Formula used:

Frequency,

  f=kv

Where,

  f= Frequency of the wave

  v= Wave speed

  k= Wave number

The pressure variation is given as,

  p(x,t)=0.75cos[π2(x-343t)]

Where,

  k= Wave number

  p0= Pressure amplitude

  v= Wave speed

Solve

  v=ωk=2πfk

To get frequency,

  f=kv

Substitute the numerical values in the above equation,

  f=kvf=π2( 343m/s)f=85.8Hz

Conclusion:

Thus, the frequency (f) of the wave is 85.8Hz .

(d)

To determine

To calculate:

Calculate the speed of the wave.

(d)

Expert Solution
Check Mark

Answer to Problem 47P

The speed (v) of the wave is 343m/s .

Explanation of Solution

Given:

Pressure variation is given by,

  p(x,t)=0.75cos[π2(x-343t)]

Formula used:

The pressure variation is given as,

  p(x,t)=0.75cos[π2(x-343t)]

Where,

  k= Wave number

  p0= Pressure amplitude

  v= Wave speed

The pressure variation is given as,

  p(x,t)=0.75cos[π2(x-343t)]

From the inspection of the equation which is given,

  p(x,t)=0.75cos[π2(x-343t)]

The value of v=343m/s .

Conclusion:

Thus, the speed (v) of wave is 343m/s .s

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Required information The leg bone (femur) breaks under a compressive force of about 6.50 × 104 N for a human and 12.3 × 104 N for a horse. The human femur has a compressive strength of 160 MPa, whereas the horse femur has a compressive strength of 140 MPa. What is the effective cross-sectional area of the femur in a horse? (Note: Since the center of the femur contains bone marrow, which has essentially no compressive strength, the effective cross-sectional area is about 80% of the total cross-sectional area.) cm2
no ai please
A block of mass m₁ = 1.85 kg and a block of mass m₂ is 0.360 for both blocks. = m M, R m2 Ꮎ 5.90 kg are connected by a massless string over a pulley in the shape of a solid disk having a mass of M = 10.0 kg. The fixed, wedge-shaped ramp makes an angle of 0 = 30.0° as shown in the figure. The coefficient of kinetic friction (a) Determine the acceleration of the two blocks. (Enter the magnitude of the acceleration.) x m/s² (b) Determine the tensions in the string on both sides of the pulley. left of the pulley × N right of the pulley X N Enter a number.

Chapter 15 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Prob. 13PCh. 15 - Prob. 14PCh. 15 - Prob. 15PCh. 15 - Prob. 16PCh. 15 - Prob. 17PCh. 15 - Prob. 18PCh. 15 - Prob. 19PCh. 15 - Prob. 20PCh. 15 - Prob. 21PCh. 15 - Prob. 22PCh. 15 - Prob. 23PCh. 15 - Prob. 24PCh. 15 - Prob. 25PCh. 15 - Prob. 26PCh. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - Prob. 29PCh. 15 - Prob. 30PCh. 15 - Prob. 31PCh. 15 - Prob. 32PCh. 15 - Prob. 33PCh. 15 - Prob. 34PCh. 15 - Prob. 35PCh. 15 - Prob. 36PCh. 15 - Prob. 37PCh. 15 - Prob. 38PCh. 15 - Prob. 39PCh. 15 - Prob. 40PCh. 15 - Prob. 41PCh. 15 - Prob. 42PCh. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - Prob. 45PCh. 15 - Prob. 46PCh. 15 - Prob. 47PCh. 15 - Prob. 48PCh. 15 - Prob. 49PCh. 15 - Prob. 50PCh. 15 - Prob. 51PCh. 15 - Prob. 52PCh. 15 - Prob. 53PCh. 15 - Prob. 54PCh. 15 - Prob. 55PCh. 15 - Prob. 56PCh. 15 - Prob. 57PCh. 15 - Prob. 58PCh. 15 - Prob. 59PCh. 15 - Prob. 60PCh. 15 - Prob. 61PCh. 15 - Prob. 62PCh. 15 - Prob. 63PCh. 15 - Prob. 64PCh. 15 - Prob. 65PCh. 15 - Prob. 66PCh. 15 - Prob. 67PCh. 15 - Prob. 68PCh. 15 - Prob. 69PCh. 15 - Prob. 70PCh. 15 - Prob. 71PCh. 15 - Prob. 72PCh. 15 - Prob. 73PCh. 15 - Prob. 74PCh. 15 - Prob. 75PCh. 15 - Prob. 76PCh. 15 - Prob. 77PCh. 15 - Prob. 78PCh. 15 - Prob. 79PCh. 15 - Prob. 80PCh. 15 - Prob. 81PCh. 15 - Prob. 82PCh. 15 - Prob. 83PCh. 15 - Prob. 84PCh. 15 - Prob. 85PCh. 15 - Prob. 86PCh. 15 - Prob. 87PCh. 15 - Prob. 88PCh. 15 - Prob. 89PCh. 15 - Prob. 90PCh. 15 - Prob. 91PCh. 15 - Prob. 92PCh. 15 - Prob. 93PCh. 15 - Prob. 94PCh. 15 - Prob. 95PCh. 15 - Prob. 96PCh. 15 - Prob. 97PCh. 15 - Prob. 98PCh. 15 - Prob. 99PCh. 15 - Prob. 100PCh. 15 - Prob. 101PCh. 15 - Prob. 102PCh. 15 - Prob. 103PCh. 15 - Prob. 104P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY