
Concept explainers
(a)
To calculate:
Calculate the derivative of speed of the sound in air as respect to absolute temperature.
(a)

Answer to Problem 34P
Derivative of the speed of the sound in air as respect to absolute temperature is
Explanation of Solution
Given:
Differentials
Formula used:
Calculation:
The speed of sound in a gas is given by
Where,
To estimate the percentage change in the speed of sound if the temperature increases from
For evaluating the
Now, to separate the variables to obtain,
Conclusion:
Derivative of the speed of the sound in air as respect to absolute temperature is
(b)
To calculate:
The percentage change in speed of the sound when temperature changes from
(b)

Answer to Problem 34P
The percentage change in speed of the sound when temperature changes from
Explanation of Solution
Given:
Differentials
Temperature
Temperature
Formula used:
Calculation:
The given equation is:
First differentiate the expression with respect to
To estimate the percentage change in the speed of sound if the temperature increases from
Approximate the
Put the numerical values to get,
Conclusion:
Thus, the percentage change in speed of the sound when temperature changes from
(c)
To calculate:
Calculate the value at
(c)

Answer to Problem 34P
The value at
Explanation of Solution
Given:
Speed of the sound
Temperature
Formula used:
Calculation:
According to the question,
Using the differential approximation, approximate the speed of sound at
Now, put the numerical values and evaluate the
Conclusion:
Thus, the value at
(d)
To explain:
Calculate an approximation comparison with result of an exact calculation.
(d)

Answer to Problem 34P
Approximation comparison with result of an exact calculation
Explanation of Solution
Given:
Speed of the sound
Temperature
Formula used:
The speed of sound wave at the absolute temperature is:
Here,
- Molecular mass of hydrogen:
Constant (hydrogen is diatomic gas):
Absolute temperature:
Gas constant:
Calculation:
The speed of sound wave at the temperature
The speed of sound wave at the temperature
Now, divide the first of these equations by the second and solve for
And,
Conclusion:
Approximation comparison with result of an exact calculation
Want to see more full solutions like this?
Chapter 15 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Pls help asaparrow_forward3. If the force of gravity stopped acting on the planets in our solar system, what would happen? a) They would spiral slowly towards the sun. b) They would continue in straight lines tangent to their orbits. c) They would continue to orbit the sun. d) They would fly straight away from the sun. e) They would spiral slowly away from the sun. 4. 1 The free-body diagram of a wagon being pulled along a horizontal surface is best represented by A F N B C 0 Ꭰ FN E a) A b) B c) C app app The app 10 app d) e) ס ח D E 10 apparrow_forwardPls help ASAParrow_forward
- Pls help asaparrow_forwardPls help asaparrow_forwardThe acceleration of an object sliding along a frictionless ramp is inclined at an angle 0 is 9. a) g tano b) g cose c) g sino 10. d) g e) zero A 1.5 kg cart is pulled with a force of 7.3 N at an angle of 40° above the horizontal. If a kinetic friction force of 3.2 N acts against the motion, the cart's acceleration along the horizontal surface will be a) 5.0 m/s² b) 1.6 m/s² c) 2.4 m/s² 11. d) 1.0 m/s² e) 2.7 m/s² What is the net force acting on an object with a mass of 10 kg moving at a constant velocity of 10 m/s [North]? a) 100 N [North] b) 100 N [South] 10 N [North} d) 10 N [South] e) None of these.arrow_forward
- Modified True/False - indicate whether the sentence or statement is true or false. If the statement is false, correct the statement to make it true. 12. An object in uniform circular motion has a constant velocity while experiencing centripetal acceleration. 13. An object travelling in uniform circular motion experiences an outward centrifugal force that tends to pull the object out of the circular path. 14. An object with less inertia can resist changes in motion more than an object with more inertia. 15. For an object sliding on a horizontal surface with a horizontal applied force, the frictional force will always increase as the applied force increases.arrow_forwardPls help asaparrow_forwardAnswer the given question showing step by step by and all necessary working out.arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





