
Concept explainers
(a)
To calculate:
Calculate the derivative of speed of the sound in air as respect to absolute temperature.
(a)

Answer to Problem 34P
Derivative of the speed of the sound in air as respect to absolute temperature is
Explanation of Solution
Given:
Differentials
Formula used:
Calculation:
The speed of sound in a gas is given by
Where,
To estimate the percentage change in the speed of sound if the temperature increases from
For evaluating the
Now, to separate the variables to obtain,
Conclusion:
Derivative of the speed of the sound in air as respect to absolute temperature is
(b)
To calculate:
The percentage change in speed of the sound when temperature changes from
(b)

Answer to Problem 34P
The percentage change in speed of the sound when temperature changes from
Explanation of Solution
Given:
Differentials
Temperature
Temperature
Formula used:
Calculation:
The given equation is:
First differentiate the expression with respect to
To estimate the percentage change in the speed of sound if the temperature increases from
Approximate the
Put the numerical values to get,
Conclusion:
Thus, the percentage change in speed of the sound when temperature changes from
(c)
To calculate:
Calculate the value at
(c)

Answer to Problem 34P
The value at
Explanation of Solution
Given:
Speed of the sound
Temperature
Formula used:
Calculation:
According to the question,
Using the differential approximation, approximate the speed of sound at
Now, put the numerical values and evaluate the
Conclusion:
Thus, the value at
(d)
To explain:
Calculate an approximation comparison with result of an exact calculation.
(d)

Answer to Problem 34P
Approximation comparison with result of an exact calculation
Explanation of Solution
Given:
Speed of the sound
Temperature
Formula used:
The speed of sound wave at the absolute temperature is:
Here,
- Molecular mass of hydrogen:
Constant (hydrogen is diatomic gas):
Absolute temperature:
Gas constant:
Calculation:
The speed of sound wave at the temperature
The speed of sound wave at the temperature
Now, divide the first of these equations by the second and solve for
And,
Conclusion:
Approximation comparison with result of an exact calculation
Want to see more full solutions like this?
Chapter 15 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- An electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E=E0sin(kx−ωt)j^,where j^ is the unit vector in the y direction. If B0 is the amplitude of the magnetic field vector, find the complete expression for the magnetic field vector B→ of the wave. What is the Poynting vector S(x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction? Give your answer in terms of some or all of the variables E0, B0, k, x, ω, t, and μ0. Specify the direction of the Poynting vector using the unit vectors i^, j^, and k^ as appropriate. Please explain all stepsarrow_forwardAnother worker is performing a task with an RWL of only 9 kg and is lifting 18 kg, giving him an LI of 2.0 (high risk). Questions:What is the primary issue according to NIOSH?Name two factors of the RWL that could be improved to reduce risk.If the horizontal distance is reduced from 50 cm to 30 cm, how does the HM change and what effect would it have?arrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for z1z2∗. Find r and θ for z1/z2∗? Find r and θ for (z1−z2)∗/z1+z2∗. Find r and θ for (z1−z2)∗/z1z2∗ Please explain all steps, Thank youarrow_forward
- An ac series circuit consists of a voltage source of frequency 60 Hz and voltage amplitude V, a 505-Ω resistor, and a capacitor of capacitance 7.2 μF. What must be the source voltage amplitude V for the average electrical power consumed in the resistor to be 236 W? There is no inductance in the circuit.arrow_forwardAn L−R−C series circuit has R= 280 Ω . At the frequency of the source, the inductor has reactance XLL= 905 Ω and the capacitor has reactance XC= 485 Ω . The amplitude of the voltage across the inductor is 445 V . What is the amplitude of the voltage across the resistor and the capacitor? What is the voltage amplitude of the source? What is the rate at which the source is delivering electrical energy to the circuit?arrow_forwardA 0.185 H inductor is connected in series with a 98.5 Ω resistor and an ac source. The voltage across the inductor is vL=−(12.5V)sin[(476rad/s)t]vL. Derive an expression for the voltage vR across the resistor. Express your answer in terms of the variables L, R, VL (amplitude of the voltage across the inductor), ω, and t. What is vR at 2.13 ms ? Please explain all stepsarrow_forward
- A worker lifts a box under the following conditions:Horizontal distance (H): 30 cmInitial height (V): 60 cmVertical travel (D): 50 cmTorso rotation (A): 30°Frequency: 3 times/minute for 1 hourGrip: Good Question:What is the RWL for this task?What does this value mean in terms of occupational safety?arrow_forwardCan someone helparrow_forwardCan someone help mearrow_forward
- 3. Four identical small masses are connected in a flat perfect square. Rank the relative rotational inertias (IA, IB, IC) about the three axes of rotation shown. Axes A and B are in the plane of the square, and axis C is perpendicular to the plane, through mass m1. ΙΑ IB m2 m1 m3 Ic m4 (a) IAarrow_forwardConsider the circuit shown in the figure below. (Assume L = 5.20 m and R2 = 440 Ω.) (a) When the switch is in position a, for what value of R1 will the circuit have a time constant of 15.4 µs? (b) What is the current in the inductor at the instant the switch is thrown to position b?arrow_forwardCan someone helparrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





