Essential University Physics
4th Edition
ISBN: 9780134988559
Author: Wolfson, Richard
Publisher: Pearson Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 44P
Dam breaks present a serious risk of widespread property damage and loss of life. You’re asked to assess a 1500-m-wide dam holding back a lake 95 in deep. The dam was built to withstand a force of 100 GN, which is supposed to be at least 50% over the force it actually experiences. Should the dam be reinforced? (Hint: You’ll need your calculus skills.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
No chatgpt pls will upvote
1.62 On a training flight, a Figure P1.62
student pilot flies from Lincoln,
Nebraska, to Clarinda, Iowa, next
to St. Joseph, Missouri, and then to
Manhattan, Kansas (Fig. P1.62). The
directions are shown relative to north:
0° is north, 90° is east, 180° is south,
and 270° is west. Use the method of
components to find (a) the distance
she has to fly from Manhattan to get
back to Lincoln, and (b) the direction
(relative to north) she must fly to get
there. Illustrate your solutions with a
vector diagram.
IOWA
147 km
Lincoln 85°
Clarinda
106 km
167°
St. Joseph
NEBRASKA
Manhattan
166 km
235°
S KANSAS MISSOURI
Plz no chatgpt pls will upvote
Chapter 15 Solutions
Essential University Physics
Ch. 15.1 - What quantity of water has the same mass as 1 m3...Ch. 15.2 - Neglecting friction and other nonconservative...Ch. 15.3 - The density of a rubber ball is three-fifths that...Ch. 15.4 - The photo shows smoke particles tracing...Ch. 15.5 - A large tank is filled with liquid to the level h1...Ch. 15 - Why do your ears pop when you drive up a mountain?Ch. 15 - Water pressure at the bottom of the ocean arises...Ch. 15 - The three containers in Fig. 15.22 are filled to...Ch. 15 - Why is it easier to float in the ocean than in...Ch. 15 - Figure 15.23 shows a cork suspended from the...
Ch. 15 - Why are dams thicker at the bottom than at the...Ch. 15 - Its not possible to breathe through a snorkel from...Ch. 15 - A helium-filled balloon stops rising long before...Ch. 15 - A barge filled with steel beams overturns in a...Ch. 15 - Why do airplanes take off into the wind?Ch. 15 - The density of molasses is 1600kg/m3. Find the...Ch. 15 - Atomic nuclei have densities around 1017kg/m3,...Ch. 15 - Compressed air with mass 8.8 kg is stored in a...Ch. 15 - Whats the weight of a column of air with...Ch. 15 - The diamond anvil is used by scientists and...Ch. 15 - You unbend a paper clip made from 1.5-mm-diameter...Ch. 15 - Whats the density of a fluid whose pressure...Ch. 15 - A research submarine can withstand an external...Ch. 15 - Prob. 19ECh. 15 - A vertical tube open at the top contains 5.0 cm of...Ch. 15 - A child attempts to drink water through a...Ch. 15 - Barometric pressure in the eye of a hurricane is...Ch. 15 - Prob. 23ECh. 15 - A 5.4-g jewel has apparent weight 32 mN when...Ch. 15 - Styrofoams density is 160kg/m3. What percent error...Ch. 15 - A steel drum has volume 0.23 m3 and mass 16 kg....Ch. 15 - Water flows through a 2.5-cm-diameter pipe at 1.8...Ch. 15 - Show that pressure has the units of energy...Ch. 15 - A typical mass flow rate for the Mississippi River...Ch. 15 - Prob. 30ECh. 15 - A typical human aorta, the main artery from the...Ch. 15 - Prob. 32ECh. 15 - Prob. 36ECh. 15 - Example 15.6: You’d like to determine the depth of...Ch. 15 - Prob. 38ECh. 15 - Example 15.6 A fire extinguisher consists of a...Ch. 15 - When a couple with total mass 120 kg lies on a...Ch. 15 - A fully loaded Volvo station wagon has mass 1950...Ch. 15 - Youre stuck in the exit row on a long flight, and...Ch. 15 - A vertical tube 1.0 cm in diameter and open at the...Ch. 15 - Dam breaks present a serious risk of widespread...Ch. 15 - A U-shaped tube open at both ends contains water...Ch. 15 - Prob. 46PCh. 15 - Archimedes purportedly used his principle to...Ch. 15 - Youre testifying in a drunk-driving case for which...Ch. 15 - A glass beaker measures 14 cm high by 5.0 cm in...Ch. 15 - A typical supertanker has mass 2.0 106 kg and...Ch. 15 - A balloon contains gas of density and is to lift a...Ch. 15 - (a) How much helium (density 0.18 kg/m3) is needed...Ch. 15 - Prob. 54PCh. 15 - If the blood pressure in the unobstructed artery...Ch. 15 - Youre a consultant for maple syrup producers. They...Ch. 15 - The water in a garden hose is at 140-kPa gauge...Ch. 15 - The venturi flowmeter shown in Fig. 15.26 is used...Ch. 15 - A 1.0-cm-diameter venturi flowmeter is inserted in...Ch. 15 - A balloons mass is 1.6 g when its empty. Its...Ch. 15 - Blood with density 1.06 g/cm3 and 10-kPa gauge...Ch. 15 - Prob. 62PCh. 15 - In 2012, film producer James Cameron (Terminator,...Ch. 15 - Prob. 65PCh. 15 - Water emerges from a faucet of diameter d0 in...Ch. 15 - Assuming norm.nl atmospheric pressure, how massive...Ch. 15 - Figure 15.28 shows a simplified diagram of a Pitot...Ch. 15 - At a hearing on a proposed wind farm, a...Ch. 15 - A pencil is weighted so it floats vertically with...Ch. 15 - A can of height h and cross-sectional area A0 is...Ch. 15 - Density and pressure in Earths atmosphere are...Ch. 15 - (a) Use the result of Problem 70 to express...Ch. 15 - A circular pan of liquid with density is centered...Ch. 15 - Find the torque that the water exerts about the...Ch. 15 - One vertical wall of a swimming pool is a regular...Ch. 15 - Youre a private investigator assisting a large...Ch. 15 - A plumber conies to your ancient apartment...Ch. 15 - Your class in naval architecture is working on the...Ch. 15 - Prob. 80PPCh. 15 - Prob. 81PPCh. 15 - Prob. 82PPCh. 15 - Prob. 83PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
7. Both Tim and Jan (problem 6) have a widow’s peak (see Module 9.8), but Mike has a straight hairline. What ar...
Campbell Biology: Concepts & Connections (9th Edition)
17. A speed skater moving to the left across frictionless ice at 8.0 m/s hits a 5.0-m-wide patch of rough ice....
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Using the South Atlantic as an example, label the beginning of the normal polarity period C that began 2 millio...
Applications and Investigations in Earth Science (9th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
When working on barley plants, two researchers independently identify a short-plant mutation and develop homozy...
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 3.19 • Win the Prize. In a carnival booth, you can win a stuffed gi- raffe if you toss a quarter into a small dish. The dish is on a shelf above the point where the quarter leaves your hand and is a horizontal dis- tance of 2.1 m from this point (Fig. E3.19). If you toss the coin with a velocity of 6.4 m/s at an angle of 60° above the horizontal, the coin will land in the dish. Ignore air resistance. (a) What is the height of the shelf above the point where the quarter leaves your hand? (b) What is the vertical component of the velocity of the quarter just before it lands in the dish? Figure E3.19 6.4 m/s 2.1arrow_forwardCan someone help me answer this thank you.arrow_forward1.21 A postal employee drives a delivery truck along the route shown in Fig. E1.21. Determine the magnitude and direction of the resultant displacement by drawing a scale diagram. (See also Exercise 1.28 for a different approach.) Figure E1.21 START 2.6 km 4.0 km 3.1 km STOParrow_forward
- help because i am so lost and it should look something like the picturearrow_forward3.31 A Ferris wheel with radius Figure E3.31 14.0 m is turning about a horizontal axis through its center (Fig. E3.31). The linear speed of a passenger on the rim is constant and equal to 6.00 m/s. What are the magnitude and direction of the passenger's acceleration as she passes through (a) the lowest point in her circular motion and (b) the high- est point in her circular motion? (c) How much time does it take the Ferris wheel to make one revolution?arrow_forward1.56 ⚫. Three horizontal ropes pull on a large stone stuck in the ground, producing the vector forces A, B, and C shown in Fig. P1.56. Find the magnitude and direction of a fourth force on the stone that will make the vector sum of the four forces zero. Figure P1.56 B(80.0 N) 30.0 A (100.0 N) 53.0° C (40.0 N) 30.0°arrow_forward
- 1.39 Given two vectors A = -2.00 +3.00 +4.00 and B=3.00 +1.00 -3.00k. (a) find the magnitude of each vector; (b) use unit vectors to write an expression for the vector difference A - B; and (c) find the magnitude of the vector difference A - B. Is this the same as the magnitude of B - Ä? Explain.arrow_forward5. The radius of a circle is 5.5 cm. (a) What is the circumference in meters? (b) What is its area in square meters? 6. Using the generic triangle below, solve the following: 0 = 55 and c = 32 m, solve for a and b. a = 250 m and b = 180 m, solve for the angle and c. b=104 cm and c = 65 cm, solve for a and the angle b a 7. Consider the figure below representing the Temperature (T in degrees Celsius) as a function of time t (in seconds) 4 12 20 (a) What is the area under the curve in the figure below? (b) The area under the graph can be calculated using integrals or derivatives? (c) During what interval is the derivative of temperature with respect to time equal to zero?arrow_forwardPart 3: Symbolic Algebra Often problems in science and engineering are done with variables only. Don't let the different letters confuse you. Manipulate them algebraically as though they were numbers. 1. Solve 3x-7= x + 3 for x 2x-1 2. Solve- for x 2+2 In questions 3-11 solve for the required symbol/letter 3. v2 +2a(s-80), a = = 4. B= Ho I 2π r 5. K = kz² 6.xm= MAL ,d= d 7.T, 2 = 8.F=Gm 9. mgh=mv² 10.qV = mu² 80 12. Suppose that the height in meters of a thrown ball after t seconds is given by h =6+4t-t². Complete the square to find the highest point and the time when this happens. 13. Solve by completing the square c₁t² + cat + 3 = 0. 14. Solve for the time t in the following expression = 0 + vot+at²arrow_forward
- A blacksmith cools a 1.60 kg chunk of iron, initially at a temperature of 650.0° C, by trickling 30.0°C water over it. All the water boils away, and the iron ends up at a temperature of 120.0° C. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Changes in both temperature and phase. Part A How much water did the blacksmith trickle over the iron? Express your answer with the appropriate units. HÅ mwater = Value 0 ? Units Submit Request Answerarrow_forwardSteel train rails are laid in 13.0-m-long segments placed end to end. The rails are laid on a winter day when their temperature is -6.0° C. Part A How much space must be left between adjacent rails if they are just to touch on a summer day when their temperature is 32.0°C? Express your answer with the appropriate units. ☐ о μΑ ? D = Value Units Submit Previous Answers Request Answer × Incorrect; Try Again; 3 attempts remaining Al Study Tools Looking for some guidance? Let's work through a few related practice questions before you go back to the real thing. This won't impact your score, so stop at anytime and ask for clarification whenever you need it. Ready to give it a try? Start Part B If the rails are originally laid in contact, what is the stress in them on a summer day when their temperature is 32.0°C? Express your answer in pascals. Enter positive value if the stress is tensile and negative value if the stress is compressive. F A Ο ΑΣΦ ? Раarrow_forwardhelp me with this and the step I am so confused. It should look something like the figure i shownarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY