Concept explainers
Your thumb squeaks on a plate you have just washed. Your sneakers squeak on the gym floor. Car tires squeal when you start or stop abruptly. You can make a goblet sing by wiping your moistened finger around its rim. When chalk squeaks on a blackboard, you can see that it makes a row of regularly spaced dashes. As these examples suggest, vibration commonly results when friction acts on a moving elastic object. The oscillation is not
A block of mass m is attached to a fixed support by a horizontal spring with force constant k and negligible mass (Fig. P15.42). Hooke’s law describes the spring both in extension and in compression. The block sits on a long horizontal board, with which it has coefficient of static friction μk and a smaller coefficient of kinetic friction μk. The board moves to the right at constant speed v. Assume the block spends most of its time sticking to the board and moving to the right with it, so the speed v is small in comparison to the average speed the block has as it slips back toward the left. (a) Show that the maximum extension of the spring from its unstressed position is very nearly given by μs mg/k. (b) Show that the block oscillates around an equilibrium position at which the spring is stretched by μk mg/k. (c) Graph the block’s position versus time. (d) Show that the amplitude of the block’s motion is
Figure P15.42
(e) Show that the period of the block’s motion is
It is the excess of static over kinetic friction that is important for the vibration. “The squeaky wheel gets the grease” because even a viscous fluid cannot exert a
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
PHYSICS:F/SCI.+ENGRS.,V.1
Additional Science Textbook Solutions
Biology: Concepts and Investigations
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Human Anatomy & Physiology (2nd Edition)
Principles of Anatomy and Physiology
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning