
(a)
Interpretation: The given red protons are whether homotopic, Enantiotopic or Diastereotopic to be predicted.
Concept Introduction:
Homotopic: If the protons are interchangeable by rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic: If the protons are interchangeable by reflectional symmetry, then the protons are chemically equivalent and termed as Enantiotopic.
Diastereotopic: If the protons are not interchangeable by either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
(b)
Interpretation: The given red protons are whether homotopic, Enantiotopic or Diastereotopic to be predicted.
Concept Introduction:
Homotopic: If the protons are interchangeable by rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic: If the protons are interchangeable by reflectional symmetry, then the protons are chemically equivalent and termed as Enantiotopic.
Diastereotopic: If the protons are not interchangeable by either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
(c)
Interpretation: The given red protons are whether homotopic, Enantiotopic or Diastereotopic to be predicted.
Concept Introduction:
Homotopic: If the protons are interchangeable by rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic: If the protons are interchangeable by reflectional symmetry, then the protons are chemically equivalent and termed as Enantiotopic.
Diastereotopic: If the protons are not interchangeable by either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
(d)
Interpretation: The given red protons are whether homotopic, Enantiotopic or Diastereotopic to be predicted.
Concept Introduction:
Homotopic: If the protons are interchangeable by rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic: If the protons are interchangeable by reflectional symmetry, then the protons are chemically equivalent and termed as Enantiotopic.
Diastereotopic: If the protons are not interchangeable by either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
(e)
Interpretation: The given red protons are whether homotopic, Enantiotopic or Diastereotopic to be predicted.
Concept Introduction:
Homotopic: If the protons are interchangeable by rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic: If the protons are interchangeable by reflectional symmetry, then the protons are chemically equivalent and termed as Enantiotopic.
Diastereotopic: If the protons are not interchangeable by either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
(f)
Interpretation: The given red protons are whether homotopic, Enantiotopic or Diastereotopic to be predicted.
Concept Introduction:
Homotopic: If the protons are interchangeable by rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic: If the protons are interchangeable by reflectional symmetry, then the protons are chemically equivalent and termed as Enantiotopic.
Diastereotopic: If the protons are not interchangeable by either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
(g)
Interpretation: The given red protons are whether homotopic, Enantiotopic or Diastereotopic to be predicted.
Concept Introduction:
Homotopic: If the protons are interchangeable by rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic: If the protons are interchangeable by reflectional symmetry, then the protons are chemically equivalent and termed as Enantiotopic.
Diastereotopic: If the protons are not interchangeable by either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
(h)
Interpretation: The given red protons are whether homotopic, Enantiotopic or Diastereotopic to be predicted.
Concept Introduction:
Homotopic: If the protons are interchangeable by rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic: If the protons are interchangeable by reflectional symmetry, then the protons are chemically equivalent and termed as Enantiotopic.
Diastereotopic: If the protons are not interchangeable by either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
(i)
Interpretation: The given red protons are whether homotopic, Enantiotopic or Diastereotopic to be predicted.
Concept Introduction:
Homotopic: If the protons are interchangeable by rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic: If the protons are interchangeable by reflectional symmetry, then the protons are chemically equivalent and termed as Enantiotopic.
Diastereotopic: If the protons are not interchangeable by either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
(j)
Interpretation: The given red protons are whether homotopic, Enantiotopic or Diastereotopic to be predicted.
Concept Introduction:
Homotopic: If the protons are interchangeable by rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic: If the protons are interchangeable by reflectional symmetry, then the protons are chemically equivalent and termed as Enantiotopic.
Diastereotopic: If the protons are not interchangeable by either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
(k)
Interpretation: The given red protons are whether homotopic, Enantiotopic or Diastereotopic to be predicted.
Concept Introduction:
Homotopic: If the protons are interchangeable by rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic: If the protons are interchangeable by reflectional symmetry, then the protons are chemically equivalent and termed as Enantiotopic.
Diastereotopic: If the protons are not interchangeable by either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
(l)
Interpretation: The given red protons are whether homotopic, Enantiotopic or Diastereotopic to be predicted.
Concept Introduction:
Homotopic: If the protons are interchangeable by rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic: If the protons are interchangeable by reflectional symmetry, then the protons are chemically equivalent and termed as Enantiotopic.
Diastereotopic: If the protons are not interchangeable by either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
(m)
Interpretation: The given red protons are whether homotopic, Enantiotopic or Diastereotopic to be predicted.
Concept Introduction:
Homotopic: If the protons are interchangeable by rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic: If the protons are interchangeable by reflectional symmetry, then the protons are chemically equivalent and termed as Enantiotopic.
Diastereotopic: If the protons are not interchangeable by either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
(n)
Interpretation: The given red protons are whether homotopic, Enantiotopic or Diastereotopic to be predicted.
Concept Introduction:
Homotopic: If the protons are interchangeable by rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic: If the protons are interchangeable by reflectional symmetry, then the protons are chemically equivalent and termed as Enantiotopic.
Diastereotopic: If the protons are not interchangeable by either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
(o)
Interpretation: The given red protons are whether homotopic, Enantiotopic or Diastereotopic to be predicted.
Concept Introduction:
Homotopic: If the protons are interchangeable by rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic: If the protons are interchangeable by reflectional symmetry, then the protons are chemically equivalent and termed as Enantiotopic.
Diastereotopic: If the protons are not interchangeable by either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.

Want to see the full answer?
Check out a sample textbook solution
Chapter 15 Solutions
Organic Chemistry 3rd.ed. Klein Evaluation/desk Copy
- A mixture of C7H12O2, C9H9OCl, biphenyl and acetone was put together in a gas chromatography tube. Please decide from the GC resutls which correspond to the peak for C7,C9 and biphenyl and explain the reasoning based on GC results. Eliminate unnecessary peaks from Gas Chromatography results.arrow_forwardIs the molecule chiral, meso, or achiral? CI .CH3 H₂C CIarrow_forwardPLEASE HELP ! URGENT!arrow_forward
- Identify priority of the substituents: CH3arrow_forwardHow many chiral carbons are in the molecule? OH F CI Brarrow_forwardA mixture of three compounds Phen-A, Acet-B and Rin-C was analyzed using TLC with 1:9 ethanol: hexane as the mobile phase. The TLC plate showed three spots of R, 0.1 and 0.2 and 0.3. Which of the three compounds (Phen-A; Acet-B or Rin-C) would have the highest (Blank 1), middle (Blank 2) and lowest (Blank 3) spot respectively? 0 CH: 0 CH, 0 H.C OH H.CN OH Acet-B Rin-C phen-A A A <arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





