
Consider the following equilibrium:
COBr2(g) ⇄ CO(g) + Br2(g) Kc = 0.190 at 73 °C
- (a) A 0.50 mol sample of COBr2 is transferred to a 9.50-L flask and heated until equilibrium is attained. Calculate the equilibrium concentrations of each species.
- (b) The volume of the container is decreased to 4.5 L and the system allowed to return to equilibrium. Calculate the new equilibrium concentrations. (Hint: The calculation will be easier if you view this as a new problem with 0.5 mol of COBr2 transferred to a 4.5-L flask.)
- (c) What is the effect of decreasing the container volume from 9.50 L to 4.50 L?
(a)

Interpretation:
The equilibrium concentration of each species in the reaction
Concept Introduction:
Equilibrium constant in terms of concentration
Le Chatelier’s principle: If an equilibrium is disturbed by changing conditions, the system will moves the equilibrium to reverse the change.
Factor’s that effect chemical equilibria:
Concentration – Equilibrium will be affected by changing the concentration of reactant or product. If we increase the concentration of reactant system will try to reverse the change by favouring forward reaction and thus increase the concentration of products. Like wise adding products increase yield of reactants.
Temperature – When the temperature increases equilibrium will shift in the endothermic direction, in the direction that absorbs heat. When the temperature decreases equilibrium will shift in the exothermic direction, in the direction that releases heat.
Pressure – If the reaction consists of only liquid and solid reactants and products, pressure has no effect in the equilibrium.
In gas reactions if the number of moles has no change then there will be no effect by pressure on equilibrium.
If pressure increases (volume decreases) then equilibrium will shift to the direction having less number of molecules and if pressure decreases (volume increases) system will shift to the direction having more number of molecules.
Answer to Problem 40GQ
The equilibrium concentration of each species when the volume is
Explanation of Solution
To determine:
The equilibrium concentration of each species in the reaction
Given:
(b)

Interpretation:
The equilibrium concentration of each species in the reaction
Concept Introduction:
Equilibrium constant in terms of concentration
Le Chatelier’s principle: If an equilibrium is disturbed by changing conditions, the system will moves the equilibrium to reverse the change.
Factor’s that effect chemical equilibria:
Concentration – Equilibrium will be affected by changing the concentration of reactant or product. If we increase the concentration of reactant system will try to reverse the change by favouring forward reaction and thus increase the concentration of products. Like wise adding products increase yield of reactants.
Temperature – When the temperature increases equilibrium will shift in the endothermic direction, in the direction that absorbs heat. When the temperature decreases equilibrium will shift in the exothermic direction, in the direction that releases heat.
Pressure – If the reaction consists of only liquid and solid reactants and products, pressure has no effect in the equilibrium.
In gas reactions if the number of moles has no change then there will be no effect by pressure on equilibrium.
If pressure increases (volume decreases) then equilibrium will shift to the direction having less number of molecules and if pressure decreases (volume increases) system will shift to the direction having more number of molecules.
Answer to Problem 40GQ
The equilibrium concentration of each species when the volume is
Explanation of Solution
To determine:
The equilibrium concentration of each species in the reaction
Given:
(c)

Interpretation:
The equilibrium concentration of each species in the reaction
Concept Introduction:
Equilibrium constant in terms of concentration
Le Chatelier’s principle: If an equilibrium is disturbed by changing conditions, the system will moves the equilibrium to reverse the change.
Factor’s that effect chemical equilibria:
Concentration – Equilibrium will be affected by changing the concentration of reactant or product. If we increase the concentration of reactant system will try to reverse the change by favouring forward reaction and thus increase the concentration of products. Like wise adding products increase yield of reactants.
Temperature – When the temperature increases equilibrium will shift in the endothermic direction, in the direction that absorbs heat. When the temperature decreases equilibrium will shift in the exothermic direction, in the direction that releases heat.
Pressure – If the reaction consists of only liquid and solid reactants and products, pressure has no effect in the equilibrium.
In gas reactions if the number of moles has no change then there will be no effect by pressure on equilibrium.
If pressure increases (volume decreases) then equilibrium will shift to the direction having less number of molecules and if pressure decreases (volume increases) system will shift to the direction having more number of molecules.
Answer to Problem 40GQ
The effect of decreasing volume is explained according to Le Chatelier’s principle.
Explanation of Solution
To determine:
The effect of decreasing volume in equilibrium
The equilibrium concentrations of the species with different volumes are calculated.
When the volume reduces from
According to Le Chatelier’s principle ,if an equilibrium is disturbed by changing conditions, the system will moves the equilibrium to reverse the change.
In gas reactions if the number of moles has no change then there will be no effect by pressure on equilibrium.
If volume decreases then equilibrium will shift to the direction having less number of molecules and if volume increases system will shift to the direction having more number of molecules.
Here volume is reduced and as a result, equilibrium will shift in the direction that has less number of moles.
Therefore, for the above reaction equilibrium will shift to left side and thus concentration of
Conclusion:
The equilibrium concentration of each species in the reaction
Want to see more full solutions like this?
Chapter 15 Solutions
Chemistry & Chemical Reactivity
Additional Science Textbook Solutions
Essentials of Human Anatomy & Physiology (12th Edition)
Organic Chemistry
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Brock Biology of Microorganisms (15th Edition)
- Question 3 What best describes the product of the following reaction? 1. CH3CH2MgBr (2 eq) 2. H a new stereocenter will not be formed a new stereocenter will be formed an alkyl halide will result an alkane will result an aromatic compound will result 1 ptsarrow_forwardRank the following from most to least reactive toward nucleophilic attack. 1. [Select] [Select] 2. Acyl halide Aldehyde 3. Carboxylate ion 4. Carboxylic acid Ketone 5. [Select]arrow_forwardQuestion 10 1 pts Which of the following is the most accurate nomenclature? 1-hydroxy-1-methyldecane-4,7-dione 2-hydroxy-2-methyldecane-5,8-dione 4,6-dioxo-2-methyldecane-2-ol 9-hydroxy-9-methyldecane-3,6-dione 8-hydroxy-8-methylnonane-3,6-dione OHarrow_forward
- Could you please explain whether my thinking is correct or incorrect regarding how I solved it? Please point out any mistakes in detail, with illustrations if needed.arrow_forwardWhat are the most proper reagents to achieve these products? سد 1. 2. OH ○ 1. BrMgC6H6; 2. H+ ○ 1. BrMgCH2CH2CH2CH2CH3; 2. H+ O 1. CH3CH2CHO; 2. H+ O 1. BrMgCH2CH3; 2. H+arrow_forwardProvide the IUPAC (systematic) name only for the following compound. Dashes, commas, and spaces must be correct. Harrow_forward
- Please use the nernst equation to genereate the Ion Selective Electrode Analysis standard curve within my excel spread sheet. Nernst Equation: E = Eo + m (ln a) Link: https://mnscu-my.sharepoint.com/:x:/g/personal/vi2163ss_go_minnstate_edu/EaREe1-PfGNKq1Cbink6kkYB5lBy05hEaE3mbGPUb22S6w?rtime=zQaSX3xY3Ugarrow_forwarda) b) c) H NaOH heat, dehydration + KOH heat, dehydration NaOH + (CH3)3CCHO heat, dehydration Pharrow_forwardshow mechanismarrow_forward
- Please draw by handarrow_forward3. Predict the major product and give a mechanism for the following reactions: (CH3)3COH/H₂SO4 a) b) NC CH₂O c) LOCH, (CH3)3COH/H2SO4 H,SO -OHarrow_forwardIndicate if the aldehyde shown reacts with the provided nucleophiles in acid or base conditions. a NaBH4 be Li eli -NH2 P(Ph3) f KCN g OH excess h CH3OH i NaCHCCH3arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning





