Foundations of Astronomy (MindTap Course List)
14th Edition
ISBN: 9781337399920
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 3LTL
To determine
The comparison between the two false-color images of the Milky Way Galaxy; the location of the cold dust and the warm dust; the probable location of no dust.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Which of the following statements best describes our galaxy, the Milky Way?
O A bulge dominated system, with little or no disk, approximately 27,000 light years across.
A disk 100,000 lightyears across filled with gas and stars, with a bulge of older stars in the galaxy centre.
A disk 27,000 light years across with a bulge of gas and newly formed stars in the galaxy centre.
O A spherical (elliptical) galaxy, 100,000 lightyears across, with no gas and no new stars.
5) The second image on the next page shows a UV image of a nearby galaxy (left) and an optical image of the same galaxy (right). Not counting the central core of the galaxy, where do the hottest stars tend to live? Again discounting the central core, is there a pattern to where the cooler stars tend to live? Explain your reasoning for both responses
The Tully-Fischer method relies on being able to relate the mass of a galaxy to its rotation velocity.
Stars in the outer-most regions of the Milky Way galaxy, located at a distance of 50 kpc from the
galactic centre, are observed to orbit at a speed vrot
determine the mass in the Milky Way that lies interior to 50 kpc. Express your answer in units of
the Solar mass.
250 km s-1. Using Kepler's 3rd Law,
Chapter 15 Solutions
Foundations of Astronomy (MindTap Course List)
Ch. 15 - What evidence can you give that we live in a...Ch. 15 - Prob. 2RQCh. 15 - Why didnt astronomers before Shapley realize how...Ch. 15 - Prob. 4RQCh. 15 - Prob. 5RQCh. 15 - Prob. 6RQCh. 15 - Which parts of a spiral galaxy comprise the...Ch. 15 - Prob. 8RQCh. 15 - Prob. 9RQCh. 15 - Prob. 10RQ
Ch. 15 - Prob. 11RQCh. 15 - Prob. 12RQCh. 15 - Prob. 13RQCh. 15 - Prob. 14RQCh. 15 - Prob. 15RQCh. 15 - Prob. 16RQCh. 15 - Prob. 17RQCh. 15 - Prob. 18RQCh. 15 - Prob. 19RQCh. 15 - Prob. 20RQCh. 15 - Prob. 21RQCh. 15 - Prob. 22RQCh. 15 - Prob. 23RQCh. 15 - Prob. 24RQCh. 15 - Prob. 25RQCh. 15 - Prob. 26RQCh. 15 - Rank these objects from oldest to youngest the...Ch. 15 - What evidence contradicts the top-down hypothesis...Ch. 15 - Prob. 29RQCh. 15 - The story of a process makes the facts easier to...Ch. 15 - Prob. 1PCh. 15 - Prob. 2PCh. 15 - Prob. 3PCh. 15 - Prob. 4PCh. 15 - Prob. 5PCh. 15 - Prob. 6PCh. 15 - Prob. 7PCh. 15 - Prob. 8PCh. 15 - If the Sun is 4.6 billion years old, how many...Ch. 15 - Prob. 10PCh. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Prob. 13PCh. 15 - Prob. 14PCh. 15 - Prob. 15PCh. 15 - Prob. 1SOPCh. 15 - Prob. 2SOPCh. 15 - Prob. 2LTLCh. 15 - Prob. 3LTLCh. 15 - Prob. 4LTLCh. 15 - Prob. 5LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Assume that dark matter is uniformly distributed throughout the Milky Way, not just in the outer halo but also throughout the bulge and in the disk, where the solar system lives. How much dark matter would you expect there to be inside the solar system? Would you expect that to be easily detectable? Hint: For the radius of the Milky Way’s dark matter halo, use R=300,000 light-years; for the solar system’s radius, use 100 AU; and start by calculating the ratio of the two volumes.arrow_forwardSuppose a galaxy formed stars for a few million years and then stopped (and no other galaxy merged or collided with it). What would be the most massive stars on the main sequence after 500 million years? After 10 billion years? How would the color of the galaxy change over this time span? (Refer to Evolution from the Main Sequence to Red Giants.)arrow_forwardLooking for absolute magnitude!arrow_forward
- As we discussed, clouds are made of a great many small drops. Really - a great many. Imagine a liquid cloud that fills a volume of 1 km3. The clouds contains 100 drops per cubic centimeter; for the sake of argument assume that each is 10 microns (micrometers) in radius. A. How many drops does the cloud contain? Compare this to a big number - say, the number of stars in the galaxy. B. What mass of water does the cloud contain? Compare this to something big - elephants, trucks, that sort of thing. C. What fraction of the cloud volume is filled with condensed water? One way to approach this is to compare the density of the suspended liquid water to the density of the surrounding air. D. How many 1 mm drizzle drops could you make from all the cloud drops? E. How much energy was released when this water condensed from vapor to liquid? If the water condensed in 20 minutes (a reasonable lifetime for a small cloud), what was the (energy per time)? powerarrow_forwardSuppose three stars lie in the disk of the Galaxy at distances of 20,000 light-years, 25,000 light-years, and 30,000 light-years from the galactic center, and suppose that right now all three are lined up in such a way that it is possible to draw a straight line through them and on to the center of the Galaxy. How will the relative positions of these three stars change with time? Assume that their orbits are all circular and lie in the plane of the disk.arrow_forwardHow would the density inside a cold cloud (T=10K) compare with the density of the ultra-hot interstellar gas (T=106K) if they were in pressure equilibrium? (It takes a large cloud to be able to shield its interior from heating so that it can be at such a low temperature.) (Hint: In pressure equilibrium, the two regions must have nT equal, where n is the number of particles per unit volume and T is the temperature.) Which region do you think is more suitable for the creation of new stars? Why?arrow_forward
- Using the information provided in Table 18.1, what is the average stellar density in our part of the Galaxy? Use only the true stars (types OM) and assume a spherical distribution with radius of 26 light-years. Stars within 21 Light-Years of the Sunarrow_forwardSuppose the Sagittarius dwarf galaxy merges completely with the Milky Way and adds 150,000 stars to it. Estimate the percentage change in the mass of the Milky Way. Will this be enough mass to affect the orbit of the Sun around the galactic center? Assume that all of the Sagittarius galaxy’s stars end up in the nuclear bulge of the Milky Way Galaxy and explain your answer.arrow_forwardWhat are the two best ways to measure the distance to a nearby spiral galaxy, and how would it be measured?arrow_forward
- The first clue that the Galaxy contains a lot of dark matter was the observation that the orbital velocities of stars did not decreases with increasing distance from the center of the Galaxy. Construct a rotation curve for the solar system by using the orbital velocities of the planets, which can be found in Appendix F. How does this curve differ from the rotation curve for the Galaxy? What does it tell you about where most of the mass in the solar system is concentrated?arrow_forwardWe have said that the Galaxy rotates differentially; that is, stars in the inner parts complete a full 360° orbit around the center of the Galaxy more rapidly than stars farther out. Use Kepler’s third law and the mass we derived in Exercise 25.19 to calculate the period of a star that is only 5000 light-years from the center. Now do the same calculation for a globular cluster at a distance of 50,000 light-years. Suppose the Sun, this star, and the globular cluster all fall on a straight line through the center of the Galaxy. Where will they be relative to each other after the Sun completes one full journey around the center of the Galaxy? (Assume that all the mass in the Galaxy is concentrated at its center.)arrow_forwardThe figure below shows the spectra of two galaxies A and B. Please can i get help with this questions below: 1. Which of these galaxies has ongoing star formation? How can you tell?2. One of these galaxies has Hubble type E3 while the other is SBb. Which is which? What does the 3 inE3 tell you about the galaxy? What does the SB in SBb tell you about the galaxy?3. What effects would dust have on the two spectra?4. Which galaxy would you expect to have more far-infrared emission? Explarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning