Foundations of Astronomy (MindTap Course List)
14th Edition
ISBN: 9781337399920
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 1P
To determine
The scale sketch of the Milky Way Galaxy in cross section including disk, Sun, nucleus, visible halo and some globular cluster.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If you want to find a sizeable collection of Population Il stars in the Milky Way Galaxy, where
would be a good place to look?
A. near the Sun
B. in a globular cluster high above the Galaxy's disk
C. in the Orion Spur
D.on the outer surface of giant molecular clouds
E. in an open cluster, especially one with a lot of dust in and around it
The Kormendy relation for ellipticals can be written as
He = 20.2+ 3.0 log R.
where R. is the half-light radius (in kpc) and 4e is the surface brightness (in magnitudes per square arc second) at R..
An elliptical galaxy obeying this relation will have a total luminosity
Lo R
for some index 7. What is the correct value of n?
O a. n=-6/5
O b. n= 4/5
T23D
Oc n= 16/5
O d. n cannot be determined with the information we have.
5) The second image on the next page shows a UV image of a nearby galaxy (left) and an optical image of the same galaxy (right). Not counting the central core of the galaxy, where do the hottest stars tend to live? Again discounting the central core, is there a pattern to where the cooler stars tend to live? Explain your reasoning for both responses
Chapter 15 Solutions
Foundations of Astronomy (MindTap Course List)
Ch. 15 - What evidence can you give that we live in a...Ch. 15 - Prob. 2RQCh. 15 - Why didnt astronomers before Shapley realize how...Ch. 15 - Prob. 4RQCh. 15 - Prob. 5RQCh. 15 - Prob. 6RQCh. 15 - Which parts of a spiral galaxy comprise the...Ch. 15 - Prob. 8RQCh. 15 - Prob. 9RQCh. 15 - Prob. 10RQ
Ch. 15 - Prob. 11RQCh. 15 - Prob. 12RQCh. 15 - Prob. 13RQCh. 15 - Prob. 14RQCh. 15 - Prob. 15RQCh. 15 - Prob. 16RQCh. 15 - Prob. 17RQCh. 15 - Prob. 18RQCh. 15 - Prob. 19RQCh. 15 - Prob. 20RQCh. 15 - Prob. 21RQCh. 15 - Prob. 22RQCh. 15 - Prob. 23RQCh. 15 - Prob. 24RQCh. 15 - Prob. 25RQCh. 15 - Prob. 26RQCh. 15 - Rank these objects from oldest to youngest the...Ch. 15 - What evidence contradicts the top-down hypothesis...Ch. 15 - Prob. 29RQCh. 15 - The story of a process makes the facts easier to...Ch. 15 - Prob. 1PCh. 15 - Prob. 2PCh. 15 - Prob. 3PCh. 15 - Prob. 4PCh. 15 - Prob. 5PCh. 15 - Prob. 6PCh. 15 - Prob. 7PCh. 15 - Prob. 8PCh. 15 - If the Sun is 4.6 billion years old, how many...Ch. 15 - Prob. 10PCh. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Prob. 13PCh. 15 - Prob. 14PCh. 15 - Prob. 15PCh. 15 - Prob. 1SOPCh. 15 - Prob. 2SOPCh. 15 - Prob. 2LTLCh. 15 - Prob. 3LTLCh. 15 - Prob. 4LTLCh. 15 - Prob. 5LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the following five kinds of objects: open cluster, giant molecular cloud, globular cluster, group of O and B stars, and planetary nebulae. A. Which occur only in spiral arms? B. Which occur only in the parts of the Galaxy other than the spiral arms? C. Which are thought to be very young? D. Which are thought to be very old? E. Which have the hottest stars?arrow_forwardDescribe how you might use the color of a galaxy to determine something about what kinds of stars it contains.arrow_forwardThe globular clusters revolve around the Galaxy in highly elliptical orbits. Where would you expect the clusters to spend most of their time? (Think of Kepler’s laws.) At any given time, would you expect most globular clusters to be moving at high or low speeds with respect to the center of the Galaxy? Why?arrow_forward
- Suppose the Sagittarius dwarf galaxy merges completely with the Milky Way and adds 150,000 stars to it. Estimate the percentage change in the mass of the Milky Way. Will this be enough mass to affect the orbit of the Sun around the galactic center? Assume that all of the Sagittarius galaxy’s stars end up in the nuclear bulge of the Milky Way Galaxy and explain your answer.arrow_forwardOne way to calculate the size and shape of the Galaxy is to estimate the distances to faint stars just from their observed apparent brightnesses and to note the distance at which stars are no longer observable. The first astronomers to try this experiment did not know that starlight is dimmed by interstellar dust. Their estimates of the size of the Galaxy were much too small. Explain why.arrow_forwardThe figure below shows the spectra of two galaxies A and B.arrow_forward
- Describe the cluster method for measuring a galaxy’s mass.arrow_forwardWhat are the characteristics of an E7 Galaxy? What about E0 galaxy? Explain.arrow_forwardSuppose you want to observe the molecular gas in a galaxy with redshift z using the rotational transition of CO J=4-3. What frequency would you observe this transition at? (Hint: the CO J=1-0 emits a photon at 115.27 GHz, and higher order transitions emit photons with frequencies in multiples of J, e.g., use the knowledge you gained from the problem above). Express your answer as an integer. Values: z = 1.3arrow_forward
- As we discussed, clouds are made of a great many small drops. Really - a great many. Imagine a liquid cloud that fills a volume of 1 km3. The clouds contains 100 drops per cubic centimeter; for the sake of argument assume that each is 10 microns (micrometers) in radius. A. How many drops does the cloud contain? Compare this to a big number - say, the number of stars in the galaxy. B. What mass of water does the cloud contain? Compare this to something big - elephants, trucks, that sort of thing. C. What fraction of the cloud volume is filled with condensed water? One way to approach this is to compare the density of the suspended liquid water to the density of the surrounding air. D. How many 1 mm drizzle drops could you make from all the cloud drops? E. How much energy was released when this water condensed from vapor to liquid? If the water condensed in 20 minutes (a reasonable lifetime for a small cloud), what was the (energy per time)? powerarrow_forwardNeeds Complete typed solution with 100 % accuracy.arrow_forwardGlobular clusters revolve around the Galaxy in highly elliptical orbits. Where would you expect the clusters to spend most of their time? (Think of Kepler’s laws.) At any given time, would you expect most globular clusters to be moving at high or low speeds with respect to the center of the Galaxy? Why? (If you would like to learn more about globular clusters, read Section 22.2 of the book, though it is not necessary to answer this question)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning