Concept explainers
Find the member end moments and reaction for the frames.
Answer to Problem 31P
The end moments at the member AC
Explanation of Solution
Calculation:
Consider the elastic modulus E of the frame is constant.
Show the free body diagram of the entire frame as in Figure 1.
Refer Figure 1,
Calculate the fixed end moment for AC.
Calculate the fixed end moment for CA.
Calculate the fixed end moment for CD.
Calculate the fixed end moment for DC.
Calculate the fixed end moment for DB.
Calculate the fixed end moment for BD.
Calculate the fixed end moment for CE.
Calculate the fixed end moment for EC.
Calculate the fixed end moment for EF.
Calculate the fixed end moment for FE.
Calculate the fixed end moment for FD.
Calculate the fixed end moment for DF.
Chord rotations:
Show the free body diagram of the chord rotation of the frame as in Figure 2.
Refer Figure 2,
Calculate the chord rotation of the frame AC and BD.
Calculate the chord rotation of the frame CE and DF.
Calculate the chord rotation of the frame CD and EF.
Calculate the slope deflection equation for the member AC.
Substitute 15 ft for L, 0 for
Calculate the slope deflection equation for the member CA.
Substitute 15 ft for L, 0 for
Calculate the slope deflection equation for the member CD.
Substitute 30 ft for L, 0 for
Calculate the slope deflection equation for the member DC.
Substitute 30 ft for L, 0 for
Calculate the slope deflection equation for the member DB.
Substitute 15 ft for L, 0 for
Calculate the slope deflection equation for the member BD.
Substitute 15 ft for L, 0 for
Calculate the slope deflection equation for the member CE.
Substitute 15 ft for L,
Calculate the slope deflection equation for the member EC.
Substitute 15 ft for L,
Calculate the slope deflection equation for the member EF.
Substitute 30 ft for L, 0 for
Calculate the slope deflection equation for the member FE.
Substitute 30 ft for L, 0 for
Calculate the slope deflection equation for the member FD.
Substitute 15 ft for L,
Calculate the slope deflection equation for the member DF.
Substitute 15 ft for L,
Write the equilibrium equation as below.
Substitute equation (2), equation (3), and equation (7) in above equation.
Write the equilibrium equation as below.
Substitute equation (4), equation (5) and equation (12) in above equation.
Write the equilibrium equation as below.
Substitute equation (8) and equation (9) in above equation.
Write the equilibrium equation as below.
Substitute equation (10) and equation (11) in above equation.
Show the free body diagram of the joint E and F due to sway force as in Figure 3.
Calculate the horizontal reaction at the member CE due to sway force by taking moment about point C.
Calculate the horizontal reaction at the member DF due to sway force by taking moment about point D.
Calculate the reaction of the support E and support F due to sway force by considering horizontal equilibrium.
Substitute equation (7), (8), (11) and (12).
Show the free body diagram of the joint C and D due to sway force as in Figure 4.
Calculate the horizontal reaction at the member AC due to sway force by taking moment about point A.
Calculate the horizontal reaction at the member BD due to sway force by taking moment about point B.
Calculate the reaction of the support C and support D due to sway force by considering horizontal equilibrium.
Substitute equation (1), equation (2), equation (5), and equation (6).
Solve the equation (13), equation (14), equation (15), equation (16), equation (17) and equation (18).
Calculate the moment about AC.
Substitute
Calculate the moment about CA.
Substitute
Calculate the moment about CD.
Substitute
Calculate the moment about DC.
Substitute
Calculate the moment about DB.
Substitute
Calculate the moment about BD.
Substitute
Calculate the moment about CE.
Substitute
Calculate the moment about EC.
Substitute
Calculate the moment about EF.
Substitute
Calculate the moment about FE.
Substitute
Calculate the moment about FD.
Substitute
Calculate the moment about DF.
Substitute
Show the section free body diagram of the member EF as in Figure 5.
Consider member EF:
Calculate the vertical reaction at the joint E by taking moment about point F.
Calculate the vertical reaction at joint F by resolving the horizontal equilibrium.
Show the section free body diagram of the member CD as in Figure 6.
Consider member CD:
Calculate the vertical reaction at the joint C by taking moment about point D.
Calculate the vertical reaction at joint D by resolving the horizontal equilibrium.
Show the section free body diagram of the member AC, CE, DB and FD as in Figure 7.
Calculate the reaction at joint A:
Calculate the reaction at joint B:
Consider member AC:
Calculate the horizontal reaction at the joint A by taking moment about point C.
Consider member BD:
Calculate the horizontal reaction at the joint B by taking moment about point D.
Show the reactions of the frame as in Figure 8.
Want to see more full solutions like this?
Chapter 15 Solutions
STRUCTURAL ANALYSIS (LL)
- Please solve using cartesian coordinates. Be clear about why cos or sin is used (explain the trig). Make sure to account for the normal force.arrow_forwardSolve /Draw the shear force and bending moment for these Don't use Artificial intelligencearrow_forwardA For the gravity concrete dam shown in the figure, the following data are available: -The factor of safety against sliding (F.S sliding) =1.2 - Unit weight of concrete (Yeone) 24 KN/m³ - Neglect( Wave pressure, silt pressure, ice force and earth quake force) H=0.65, (Ywater)= 9.81 KN/m³ Find factor of safety against overturning (F.S overturning) 10m 5m 6m 80marrow_forward
- Draw the shear force and bending moment diagramarrow_forwardThe pin-connected structure consists of a rigid beam ABCD and two supporting bars. Bar (1) is an aluminum alloy [E = 75 GPa] with a cross-sectional area of A₁ = 850 mm². Bar (2) is a bronze alloy [E = 109 GPa] with a cross-sectional area of A₂ = 410 mm². Assume L₁=2.6 m, L₂-3.3 m, a=0.7 m, b=1.5 m, and c=0.8 m. All bars are unstressed before the load P is applied; however, there is a 4.5-mm clearance in the pin connection at A. If a load of P = 45 kN is applied at B, determine: (a) the normal stresses σ1,02, in both bars (1) and (2). (b) the normal strains €1, €2, in bars (1) and (2). (c) determine the downward deflection VA of point A on the rigid bar. (1) Answers: a (a) σ1 = (b) E₁ = (C) VA = i i i ล B C L2 b C MPa, σ = i με, Ε2 i mm. MPa. μεarrow_forwardThe pin-connected structure consists of a rigid beam ABCD and two supporting bars. Bar (1) is an aluminum alloy [E = 79 GPa] with a cross-sectional area of A₁ = 780 mm². Bar (2) is a bronze alloy [E = 104 GPa] with a cross-sectional area of A₂ = 460 mm². Assume L₁=1.6 m, L₂-2.1 m, a=0.6 m, b=1.8 m, and c-1.3 m. All bars are unstressed before the load P is applied; however, there is a 4-mm clearance in the pin connection at A. If a load of P = 58 kN is applied at B, determine: (a) the normal stresses 01,02, in both bars (1) and (2). (b) the normal strains €1,2, in bars (1) and (2). (c) determine the downward deflection VA of point A on the rigid bar. (1) L₁ B Answers: (a)σ = b ล L2 C D i MPa, σ1 = i MPa. με, Ε2 = i με. (b) €1 = i (C) VA = i mm.arrow_forward
- A load of P = 114 kN is supported by a structure consisting of rigid bar ABC, two identical solid bronze [E = 116 GPa] rods, and a solid steel [E=192 GPa] rod, as shown. The bronze rods (1) each have a diameter of 19 mm and they are symmetrically positioned relative to the center rod (2) and the applied load P. Steel rod (2) has a diameter of 28 mm. All bars are unstressed before the load P is applied; however, there is a 1.5-mm clearance in the bolted connection at B. Assume L₁ = 2.4 m and L₂ = 1.5 m. Determine: (a) the normal stresses in the bronze and steel rods (01, 02). (b) the downward deflection of rigid bar ABC. (1) Answers: L2 (a) σ1 (b) v = = i i B (1) MPa, 02 mm. = i MPa.arrow_forwardA load of P = 114 kN is supported by a structure consisting of rigid bar ABC, two identical solid bronze [E = 116 GPa] rods, and a solid steel [E=192 GPa] rod, as shown. The bronze rods (1) each have a diameter of 19 mm and they are symmetrically positioned relative to the center rod (2) and the applied load P. Steel rod (2) has a diameter of 28 mm. All bars are unstressed before the load P is applied; however, there is a 1.5-mm clearance in the bolted connection at B. Assume L₁ = 2.4m and L2 = 1.5 m. Determine: (a) the normal stresses in the bronze and steel rods (01,02). (b) the downward deflection of rigid bar ABC. (1) Answers: (a)σ1 = (b) vi L2 (2) (1) B P mm. Li MPa, 02 MPa. =arrow_forwardA high-density polvethelene (HD PE I9 - 780 MPaiy = 0.46 rod has a diameter of 70 mm before load Pis applied. In order to maintain certain clearances, the diameter of the rod must not exceed 72 mm when loaded. What is the largest permissible compressive load P that can be applied to the HDPE rod?arrow_forward
- Current Attempt in Progress A load of P 117 kN is supported by a structure consisting of rigid bar ABC, two identical solid bronze [E= 83 GPa] rods, and a solid steel [E 182 GPa] rod, as shown. The bronze rods (1) each have a diameter of 20 mm and they are symmetrically positioned relative to the center rod (2) and the applied load P. Steel rod (2) has a diameter of 26 mm. All bars are unstressed before the load Pis applied; however, there is a 3.4-mm clearance in the bolted connection at B. Assume L₁ = 3.3 m and L2 = 1.6 m. Determine: (a) the normal stresses in the bronze and steel rods (01, 02). (b) the downward deflection v of rigid bar ABC. (1) Answers: L2 (2) (1) B P (a) σ = (b) y = eTextbook and Media Save for Later MPa. MPa, 02 = mm. Attempts: 0 of 5 used Submit Answerarrow_forwardA vinyl [E= 2.60 GPa; v = 0.43] block with width b = 50 mm, depth d = 100 mm, and height h = 270 mm rests on a smooth rigid base. A load P is applied to a rigid plate that rests on top of the block. Calculate the change in the depth dimension d of the block after a load of P = 120 kN is applied. Rigid plate Answer: Ad= Width b Depth d Height Rigid base mmarrow_forwardAn aluminum [E = 11900 ksi] control rod with a circular cross section must not stretch more than 0.24 in. when the tension in the rod is 1980 lb. If the maximum allowable normal stress in the rod is 12.1 ksi, determine: (a) the smallest diameter d that can be used for the rod. (b) the corresponding maximum length L of the rod. Answers: (a) d = i (b) L = i in. in.arrow_forward