
Concept explainers
(a)
The force constant of the spring.
(a)

Answer to Problem 28P
The force constant of the spring is
Explanation of Solution
Given that the force is
Since the horizontal force of
Write the expression for the force constant of the spring.
Here,
Conclusion:
Substitute
Therefore, the force constant of the spring is
(b)
The frequency of oscillation of the spring-object system.
(b)

Answer to Problem 28P
The frequency of oscillation of the spring-object system is
Explanation of Solution
Given that the mass of the object is
Write the expression for the frequency of oscillation of the spring-object system.
Here,
Conclusion:
Substitute
Therefore, the frequency of oscillation of the spring-object system is
(c)
The maximum speed of the object.
(c)

Answer to Problem 28P
The maximum speed of the object is
Explanation of Solution
Given that the displacement from the equilibrium position is
Write the expression for the maximum speed of the object executing
Here,
The amplitude of motion is equal to the initial displacement of the object which is
Write the expression for the angular frequency.
Use equation (IV) in (III).
Conclusion:
Substitute
Therefore, the maximum speed of the object is
(d)
The position where maximum speed occur.
(d)

Answer to Problem 28P
The position where maximum speed occur is
Explanation of Solution
For the oscillating spring-object system, the objects loses all its potential energy and gains maximum kinetic energy at the equilibrium point. Since the maximum kinetic energy corresponds to the maximum speed, the object gains maximum speed at the equilibrium position, which is described by the coordinate,
Conclusion:
Therefore, the position where maximum speed occur is
(e)
The maximum acceleration of the object.
(e)

Answer to Problem 28P
The maximum acceleration of the object is
Explanation of Solution
Write the expression for the maximum acceleration of the object executing SHM.
Here,
Use equation (IV) in (VI).
Conclusion:
Substitute
Therefore, the maximum acceleration of the object is
(f)
The position where the maximum acceleration occur.
(f)

Answer to Problem 28P
The position where the maximum acceleration occur is
Explanation of Solution
For the oscillating spring-object system, the maximum acceleration occurs where the object reverses its direction of motion. This happens only at the positions corresponding to the maximum displacement. Which is
Conclusion:
Therefore, the position where the maximum acceleration occur is
(g)
The total energy of the oscillating system.
(g)

Answer to Problem 28P
The total energy of the oscillating system is
Explanation of Solution
It is obtained that the force constant of the spring is
Write the expression for the energy of the spring-object oscillating system.
Here,
Conclusion:
Substitute
Therefore, the total energy of the oscillating system is
(h)
The speed of the object when its position is equal to one-third the maximum value.
(h)

Answer to Problem 28P
The speed of the object when its position is equal to one-third the maximum value is
Explanation of Solution
Write the expression for the speed at a given position of an object executing SHM in a spring.
Here,
Since the position is one-third the maximum value (
Conclusion:
Substitute
Therefore, the speed of the object when its position is equal to one-third the maximum value is
(i)
The acceleration of the object when its position is equal to one-third the maximum value.
(i)

Answer to Problem 28P
The speed of the object when its position is equal to one-third the maximum value is
Explanation of Solution
Write the expression for the acceleration at a given position of an object executing SHM in a spring.
Here,
Since the position is one-third the maximum value (
Conclusion:
Substitute
Therefore, the speed of the object when its position is equal to one-third the maximum value is
Want to see more full solutions like this?
Chapter 15 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- How can I remember this Formula: p = m × v where m is in kg and v in Meter per second in the best way?arrow_forwardHow can I remember the Formula for the impulsearrow_forwardA Geiger-Mueller tube is a radiation detector that consists of a closed, hollow, metal cylinder (the cathode) of inner radius ra and a coaxial cylindrical wire (the anode) of radius г (see figure below) with a gas filling the space between the electrodes. Assume that the internal diameter of a Geiger-Mueller tube is 3.00 cm and that the wire along the axis has a diameter of 0.190 mm. The dielectric strength of the gas between the central wire and the cylinder is 1.15 × 106 V/m. Use the equation 2πrlE = 9in to calculate the maximum potential difference that can be applied between the wire and the cylinder before breakdown occurs in the gas. V Anode Cathodearrow_forward
- 3.77 is not the correct answer!arrow_forwardA I squar frame has sides that measure 2.45m when it is at rest. What is the area of the frame when it moves parellel to one of its diagonal with a m² speed of 0.86.c as indicated in the figure? >V.arrow_forwardAn astronent travels to a distant star with a speed of 0.44C relative to Earth. From the austronaut's point of view, the star is 420 ly from Earth. On the return trip, the astronent travels speed of 0.76c relative to Earth. What is the distance covered on the return trip, as measured by the astronant? your answer in light-years. with a Give ly.arrow_forward
- star by spaceship Sixus is about 9.00 ly from Earth. To preach the star in 15.04 (ship time), how fast must you travel? C.arrow_forwardIf light-bulb A is unscrewed, how will the brightness of bulbs B and C change, if at all? How does the current drawn by from the battery change?arrow_forwardCan someone help mearrow_forward
- Can someone help me with this thank youarrow_forward(a) For a spherical capacitor with inner radius a and outer radius b, we have the following for the capacitance. ab C = k₂(b- a) 0.0695 m 0.145 m (8.99 × 10º N · m²/c²)( [0.145 m- 0.0695 m × 10-11 F = PF IIarrow_forwardA pendulum bob A (0.5 kg) is given an initialspeed of vA = 4 m/s when the chord ishorizontal. It then hits a stationary block B (1kg) which then slides to a maximum distanced before it stops. Determine the value of d.The coefficient of static friction between theblock and the plane is μk = 0.2. The coefficientof restitution between A and B is e = 0.8.Ans: d=1.0034 marrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





