Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
Question
Book Icon
Chapter 15, Problem 41P

(a)

To determine

The maximum speed of the bob.

(a)

Expert Solution
Check Mark

Answer to Problem 41P

The maximum speed of the bob is 0.820m/s .

Explanation of Solution

Section 1:

To determine: The amplitude of the motion.

Answer: The maximum speed of the amplitude of the motion is 0.262m .

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The formula to calculate amplitude is,

A=Lθ

  • L is the length of pendulum.
  • θ is the displaced angle.

Substitute 1.00m for L and 15.0° for θ in above equation to find A .

A=(1.00m)(15.0°(π180°))=0.262m

Section 2:

To determine: The angular frequency of the motion.

Answer: The angular frequency of the motion is 3.13rad/s .

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The formula to calculate angular frequency is,

ω=gL

  • g is the acceleration due to gravity.

Substitute 1.00m for L and 9.8m/s2 for g in above equation to find ω .

ω=9.8m/s21.00m=3.13rad/s

Section 3:

To determine: The maximum speed of the bob.

Answer: The maximum speed of the bob is 0.820m/s .

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The formula to calculate maximum speed is,

vmax=Aω

Substitute 0.262m for A and 3.13rad/s for ω in above equation to find vmax .

vmax=(0.262m)(3.13rad/s)=0.820m/s

Conclusion:

Therefore, the maximum speed of the bob is 0.820m/s .

(b)

To determine

The maximum acceleration of the bob.

(b)

Expert Solution
Check Mark

Answer to Problem 41P

The maximum acceleration of the bob is 2.57rad/s2 .

Explanation of Solution

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The formula to calculate maximum acceleration of the bob is,

amax=Aω2

Substitute 0.262m for A and 3.13rad/s for ω in above equation to find amax .

amax=(0.262 m)(3.13rad/s)2=2.57rad/s2

Conclusion:

Therefore, the maximum acceleration of the bob is 2.57rad/s2 .

(c)

To determine

The maximum restoring force of the bob.

(c)

Expert Solution
Check Mark

Answer to Problem 41P

The maximum restoring force of the bob is 0.641N .

Explanation of Solution

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The formula to calculate maximum restoring force of the bob is,

F=mamax

  • m is the mass of the pendulum.

Substitute Aω2 for amax in above equation.

F=mAω2

Substitute 0.250kg for m , 0.262 m for A and 3.13rad/s for ω in above equation to find F .

F=(0.250kg)(0.262m)(3.13rad/s)2=0.641N

Conclusion:

Therefore, the maximum restoring force of the bob is 0.641N .

(d)

To determine

The maximum speed, angular acceleration and restoring force of the bob using the model introduced earlier chapter.

(d)

Expert Solution
Check Mark

Answer to Problem 41P

The maximum speed of the bob is 0.817m/s , the angular acceleration of the bob is 2.54rad/s2 and the restoring force of the bob is 0.634N .

Explanation of Solution

Section 1:

To determine: The maximum speed of the bob.

Answer: The maximum speed of the bob is 0.817m/s .

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

Consider the figure given below.

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University, Chapter 15, Problem 41P

In triangle ABC ,

cosθ=ACABAC=ABcosθ=Lcosθ

The height of the bob is,

h=ADAC=LLcosθ=L(1cosθ)

The law of conservation of energy is,

mgh=12mvmax2

Substitute L(1cosθ) for h in above expression.

mgL(1cosθ)=12mvmax2gL(1cosθ)=12vmax2

Substitute 15.0° for θ , 1.00m for L and 9.8m/s2 for g in above equation to find vmax .

(9.8m/s2)(1.00m)(1cos(15.0°))=12vmax2vmax2=2(0.333)m2/s2vmax=2(0.333)m2/s2=0.817m/s

Section 2:

To determine: The angular acceleration of the bob.

Answer: The angular acceleration of the bob is 2.54rad/s2 .

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The formula for the moment of inertia of the pendulum is,

I=mL2

The equation for the conservation of energy is,

Iα=mgLsinθ

  • α is the angular acceleration.

Substitute mL2 for I in above expression and rearrange for α .

mL2α=mgLsinθα=mgLsinθmL2=gsinθL

Substitute 9.8m/s2 for g , 1.00m for L and 15.0° for θ in above equation to find α .

α=(9.8m/s2)sin(15.0°)1.00m=2.54rad/s2

Section 3:

To determine: The restoring force of the bob.

Answer: The restoring force of the bob is 0.634N .

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The force is maximum, when the angle is maximum.

The restoring force is calculated as,

F=mgsinθ

Substitute 15.0° for θ , 0.250kg for m and 9.8m/s2 for g in above equation to find F .

F=(0.250kg)(9.8m/s2)sin(15.0°)=0.634N

Conclusion:

Therefore, the maximum speed of the bob is 0.817m/s , the angular acceleration of the bob is 2.54rad/s2 and the restoring force of the bob is 0.634N .

(e)

To determine

To compare: The answers of part (a), part (c) and part (d).

(e)

Expert Solution
Check Mark

Explanation of Solution

Introduction: The restoring force is defined as the force or torque that tends to restore a system to equilibrium after displacement.

The answers are closest but not exactly the same. The angular amplitude of 15.0° is not small, so the simple harmonic oscillation is not accurate. The answers computed from conservation of the energy and from Newton’s second law are more accurate.

Conclusion:

Therefore, the answers are closest but not exactly the same.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No chatgpt pls will upvote
Correct answer  No chatgpt pls will upvote
Statistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.

Chapter 15 Solutions

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University

Ch. 15 - Prob. 5OQCh. 15 - Prob. 6OQCh. 15 - Prob. 7OQCh. 15 - Prob. 8OQCh. 15 - Prob. 9OQCh. 15 - Prob. 10OQCh. 15 - Prob. 11OQCh. 15 - Prob. 12OQCh. 15 - Prob. 13OQCh. 15 - Prob. 14OQCh. 15 - Prob. 15OQCh. 15 - Prob. 16OQCh. 15 - Prob. 17OQCh. 15 - Prob. 1CQCh. 15 - Prob. 2CQCh. 15 - Prob. 3CQCh. 15 - Prob. 4CQCh. 15 - Prob. 5CQCh. 15 - Prob. 6CQCh. 15 - Prob. 7CQCh. 15 - Prob. 8CQCh. 15 - Prob. 9CQCh. 15 - Prob. 10CQCh. 15 - Prob. 11CQCh. 15 - Prob. 12CQCh. 15 - Prob. 13CQCh. 15 - A 0.60-kg block attached to a spring with force...Ch. 15 - Prob. 2PCh. 15 - Prob. 3PCh. 15 - Prob. 4PCh. 15 - The position of a particle is given by the...Ch. 15 - A piston in a gasoline engine is in simple...Ch. 15 - Prob. 7PCh. 15 - Prob. 8PCh. 15 - Prob. 9PCh. 15 - Prob. 10PCh. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Review. A particle moves along the x axis. It is...Ch. 15 - Prob. 14PCh. 15 - A particle moving along the x axis in simple...Ch. 15 - The initial position, velocity, and acceleration...Ch. 15 - Prob. 17PCh. 15 - Prob. 18PCh. 15 - Prob. 19PCh. 15 - You attach an object to the bottom end of a...Ch. 15 - Prob. 21PCh. 15 - Prob. 22PCh. 15 - Prob. 23PCh. 15 - Prob. 24PCh. 15 - Prob. 25PCh. 15 - Prob. 26PCh. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - A simple harmonic oscillator of amplitude A has a...Ch. 15 - Review. A 65.0-kg bungee jumper steps off a bridge...Ch. 15 - Review. A 0.250-kg block resting on a...Ch. 15 - Prob. 32PCh. 15 - Prob. 33PCh. 15 - A seconds pendulum is one that moves through its...Ch. 15 - A simple pendulum makes 120 complete oscillations...Ch. 15 - A particle of mass m slides without friction...Ch. 15 - A physical pendulum in the form of a planar object...Ch. 15 - Prob. 38PCh. 15 - Prob. 39PCh. 15 - Consider the physical pendulum of Figure 15.16....Ch. 15 - Prob. 41PCh. 15 - Prob. 42PCh. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - A watch balance wheel (Fig. P15.25) has a period...Ch. 15 - Prob. 46PCh. 15 - Prob. 47PCh. 15 - Show that the time rate of change of mechanical...Ch. 15 - Show that Equation 15.32 is a solution of Equation...Ch. 15 - Prob. 50PCh. 15 - Prob. 51PCh. 15 - Prob. 52PCh. 15 - Prob. 53PCh. 15 - Considering an undamped, forced oscillator (b =...Ch. 15 - Prob. 55PCh. 15 - Prob. 56APCh. 15 - An object of mass m moves in simple harmonic...Ch. 15 - Prob. 58APCh. 15 - Prob. 59APCh. 15 - Prob. 60APCh. 15 - Four people, each with a mass of 72.4 kg, are in a...Ch. 15 - Prob. 62APCh. 15 - Prob. 63APCh. 15 - An object attached to a spring vibrates with...Ch. 15 - Prob. 65APCh. 15 - Prob. 66APCh. 15 - A pendulum of length L and mass M has a spring of...Ch. 15 - A block of mass m is connected to two springs of...Ch. 15 - Prob. 69APCh. 15 - Prob. 70APCh. 15 - Review. A particle of mass 4.00 kg is attached to...Ch. 15 - Prob. 72APCh. 15 - Prob. 73APCh. 15 - Prob. 74APCh. 15 - Prob. 75APCh. 15 - Review. A light balloon filled with helium of...Ch. 15 - Prob. 78APCh. 15 - A particle with a mass of 0.500 kg is attached to...Ch. 15 - Prob. 80APCh. 15 - Review. A lobstermans buoy is a solid wooden...Ch. 15 - Prob. 82APCh. 15 - Prob. 83APCh. 15 - A smaller disk of radius r and mass m is attached...Ch. 15 - Prob. 85CPCh. 15 - Prob. 86CPCh. 15 - Prob. 87CPCh. 15 - Prob. 88CPCh. 15 - A light, cubical container of volume a3 is...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning