Determine the truth value of each of these statements if the domain of each variable consists of all real numbers. a) ∀ x ∃ y ( x 2 = y ) b) ∀ x ∃ y ( x = y 2 ) c) ∃ x ∀ y ( x y = 0 ) d) ∃ x ∃ y ( x + y ≠ y + x ) e) ∀ x ( x ≠ 0 → ∃ y ( x y = 1 ) ) f) ∃ x ∀ y ( y ≠ 0 → x y = 1 ) g) ∀ x ∃ y ( x + y = 1 ) h) ∃ x ∃ y ( x + 2 y = 2 ∧ 2 x + 4 y = 5 ) i) ∀ x ∃ y ( x + y = 2 ∧ 2 x − y = 1 ) j) ∀ x ∀ y ∃ z ( z = ( x + y ) / 2 )
Determine the truth value of each of these statements if the domain of each variable consists of all real numbers. a) ∀ x ∃ y ( x 2 = y ) b) ∀ x ∃ y ( x = y 2 ) c) ∃ x ∀ y ( x y = 0 ) d) ∃ x ∃ y ( x + y ≠ y + x ) e) ∀ x ( x ≠ 0 → ∃ y ( x y = 1 ) ) f) ∃ x ∀ y ( y ≠ 0 → x y = 1 ) g) ∀ x ∃ y ( x + y = 1 ) h) ∃ x ∃ y ( x + 2 y = 2 ∧ 2 x + 4 y = 5 ) i) ∀ x ∃ y ( x + y = 2 ∧ 2 x − y = 1 ) j) ∀ x ∀ y ∃ z ( z = ( x + y ) / 2 )
A function is defined on the interval (-π/2,π/2) by this multipart rule:
if -π/2 < x < 0
f(x) =
a
if x=0
31-tan x
+31-cot x
if 0 < x < π/2
Here, a and b are constants. Find a and b so that the function f(x) is continuous at x=0.
a=
b= 3
Use the definition of continuity and the properties of limits to show that the function is continuous at the given number a.
f(x) = (x + 4x4) 5,
a = -1
lim f(x)
X--1
=
lim
x+4x
X--1
lim
X-1
4
x+4x
5
))"
5
))
by the power law
by the sum law
lim (x) + lim
X--1
4
4x
X-1
-(0,00+(
Find f(-1).
f(-1)=243
lim (x) +
-1 +4
35
4 ([
)
lim (x4)
5
x-1
Thus, by the definition of continuity, f is continuous at a = -1.
by the multiple constant law
by the direct substitution property
Chapter 1 Solutions
Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
MFCS unit-1 || Part:1 || JNTU || Well formed formula || propositional calculus || truth tables; Author: Learn with Smily;https://www.youtube.com/watch?v=XV15Q4mCcHc;License: Standard YouTube License, CC-BY