(II) Consider the point x = 1.00 m on the cord of Example 15–5. Determine ( a ) the maximum velocity of this point, and ( b ) its maximum acceleration. ( c ) What is its velocity and acceleration at t = 2.50 s? EXAMPLE 15–5 A traveling wave. The left-hand end of a long horizontal stretched cord oscillates transversely in SHM with frequency f = 250 Hz and amplitude 2.6 cm. The cord is under a tension of 140 N and has a linear density μ = 0.12 kg/m. At t = 0, the end of the cord has an upward displacement of 1.6 cm and is falling (Fig. 15–14). Determine ( a ) the wavelength of waves produced and ( b ) the equation for the traveling wave.
(II) Consider the point x = 1.00 m on the cord of Example 15–5. Determine ( a ) the maximum velocity of this point, and ( b ) its maximum acceleration. ( c ) What is its velocity and acceleration at t = 2.50 s? EXAMPLE 15–5 A traveling wave. The left-hand end of a long horizontal stretched cord oscillates transversely in SHM with frequency f = 250 Hz and amplitude 2.6 cm. The cord is under a tension of 140 N and has a linear density μ = 0.12 kg/m. At t = 0, the end of the cord has an upward displacement of 1.6 cm and is falling (Fig. 15–14). Determine ( a ) the wavelength of waves produced and ( b ) the equation for the traveling wave.
(II) Consider the point x = 1.00 m on the cord of Example 15–5. Determine (a) the maximum velocity of this point, and (b) its maximum acceleration. (c) What is its velocity and acceleration at t = 2.50 s?
EXAMPLE 15–5 A traveling wave. The left-hand end of a long horizontal stretched cord oscillates transversely in SHM with frequency f = 250 Hz and amplitude 2.6 cm. The cord is under a tension of 140 N and has a linear density μ = 0.12 kg/m. At t = 0, the end of the cord has an upward displacement of 1.6 cm and is falling (Fig. 15–14). Determine (a) the wavelength of waves produced and (b) the equation for the traveling wave.
Definition Definition Special type of oscillation where the force of restoration is directly proportional to the displacement of the object from its mean or initial position. If an object is in motion such that the acceleration of the object is directly proportional to its displacement (which helps the moving object return to its resting position) then the object is said to undergo a simple harmonic motion. An object undergoing SHM always moves like a wave.
SARET CRKS AUTOWAY
12. A stone is dropped from the top of a cliff. It is seen to hit the ground below
after 3.55 s. How high is the cliff?
13. A ball is dropped from rest at the top of a building that is 320 m tall. Assuming
no air resistance, what is the speed of the ball just before it strikes the ground?
14. Estimate (a) how long it took King Kong to fall straight down from the top
of the Empire State Building (280m high), and (b) his velocity just before
"landing".
Useful equations
For Constant Velocity:
V =>
D
X = V₁t + Xo
For Constant Acceleration:
Vr = V + at
X = Xo+Vot +
v=V+2a(X-Xo)
\prom = V +V
V velocity
t = time
D Distance
X = Final Position
Xo Initial Position
V = Final Velocity
Vo Initial Velocity
a = acceleration
For free fall
Yf
= Final Position
Yo Initial Position
g = 9.80
m
$2
For free fall:
V = V + gt
Y=Yo+Vo t +
+gt
V,² = V₁²+2g (Y-Yo)
V+Vo
Vprom=
2
6
Solve the problems
Chapter 15 Solutions
Physics for Scientists & Engineers with Modern Physics [With Access Code]
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.