(II) Consider the point x = 1.00 m on the cord of Example 15–5. Determine ( a ) the maximum velocity of this point, and ( b ) its maximum acceleration. ( c ) What is its velocity and acceleration at t = 2.50 s? EXAMPLE 15–5 A traveling wave. The left-hand end of a long horizontal stretched cord oscillates transversely in SHM with frequency f = 250 Hz and amplitude 2.6 cm. The cord is under a tension of 140 N and has a linear density μ = 0.12 kg/m. At t = 0, the end of the cord has an upward displacement of 1.6 cm and is falling (Fig. 15–14). Determine ( a ) the wavelength of waves produced and ( b ) the equation for the traveling wave.
(II) Consider the point x = 1.00 m on the cord of Example 15–5. Determine ( a ) the maximum velocity of this point, and ( b ) its maximum acceleration. ( c ) What is its velocity and acceleration at t = 2.50 s? EXAMPLE 15–5 A traveling wave. The left-hand end of a long horizontal stretched cord oscillates transversely in SHM with frequency f = 250 Hz and amplitude 2.6 cm. The cord is under a tension of 140 N and has a linear density μ = 0.12 kg/m. At t = 0, the end of the cord has an upward displacement of 1.6 cm and is falling (Fig. 15–14). Determine ( a ) the wavelength of waves produced and ( b ) the equation for the traveling wave.
(II) Consider the point x = 1.00 m on the cord of Example 15–5. Determine (a) the maximum velocity of this point, and (b) its maximum acceleration. (c) What is its velocity and acceleration at t = 2.50 s?
EXAMPLE 15–5 A traveling wave. The left-hand end of a long horizontal stretched cord oscillates transversely in SHM with frequency f = 250 Hz and amplitude 2.6 cm. The cord is under a tension of 140 N and has a linear density μ = 0.12 kg/m. At t = 0, the end of the cord has an upward displacement of 1.6 cm and is falling (Fig. 15–14). Determine (a) the wavelength of waves produced and (b) the equation for the traveling wave.
Definition Definition Special type of oscillation where the force of restoration is directly proportional to the displacement of the object from its mean or initial position. If an object is in motion such that the acceleration of the object is directly proportional to its displacement (which helps the moving object return to its resting position) then the object is said to undergo a simple harmonic motion. An object undergoing SHM always moves like a wave.
Please solve and answer this problem correctly please. Thank you!!
Please solve and answer this problem correctly please. Thank you!!
a) Use the node-voltage method to find v1, v2, and
v3 in the circuit in Fig. P4.14.
b) How much power does the 40 V voltage source
deliver to the circuit?
Figure P4.14
302
202
w
w
+
+
+
40 V
V1
80 Ω 02
ΣΑΩ
28 A
V3 +
w
w
102
202
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.