(a)
Interpretation:
Molarity of CuCl2 solution have to be calculated.
Concept Introduction:
Composition of a solution can be defined by expressing its concentration. The concentrations of solutions can be expressed in different ways, which are involved in the quantity of solute and the quantity of solution or solvent. Various methods are used to describe the concentration of the solution quantitatively. Some commonly used quantitative concentration terms are percent by mass, percent by volume, molarity, molality and mole fraction.
Molarity: Molarity is defined as the number of moles of solute present in one litre of the solution In expression,
Again
Molarity of CuCl2solution is 0.253 M.
Data given: Mass of CuCl2= 4.25 gm
Volume of CuCl2solution = 125 mL = 0.125 L
(b)
Interpretation:
Molarity of NaHCO3solution have to be calculated.
Concept Introduction:
Composition of a solution can be defined by expressing its concentration. The concentrations of solutions can be expressed in different ways, which are involved in the quantity of solute and the quantity of solution or solvent. Various methods are used to describe the concentration of the solution quantitatively. Some commonly used quantitative concentration terms are percent by mass, percent by volume, molarity, molality and mole fraction.
Molarity: Molarity is defined as the number of moles of solute present in one litre of the solution In expression,
Again
Molarity of NaHCO3solution is 0.106 M.
Data given: Mass of NaHCO3= 0.101 gm
Volume of NaHCO3solution = 11.3 mL = 0.0113 L
(c)
Interpretation:
Molarity of NaCl solution have to be calculated.
Concept Introduction:
Composition of a solution can be defined by expressing its concentration. The concentrations of solutions can be expressed in different ways, which are involved in the quantity of solute and the quantity of solution or solvent. Various methods are used to describe the concentration of the solution quantitatively. Some commonly used quantitative concentration terms are percent by mass, percent by volume, molarity, molality and mole fraction.
Molarity: Molarity is defined as the number of moles of solute present in one litre of the solution In expression,
Again
Molarity of Na2CO3solution is 0.434 M.
Data given: Mass of Na2CO3= 52.9 gm
Volume of Na2CO3solution = 1.15 L
(d)
Interpretation:
Molarity of KOH solution have to be calculated.
Concept Introduction:
Composition of a solution can be defined by expressing its concentration. The concentrations of solutions can be expressed in different ways, which are involved in the quantity of solute and the quantity of solution or solvent. Various methods are used to describe the concentration of the solution quantitatively. Some commonly used quantitative concentration terms are percent by mass, percent by volume, molarity, molality and mole fraction.
Molarity: Molarity is defined as the number of moles of solute present in one litre of the solution In expression,
Again
Molarity of KOH solution is 0.0017 M.
Data given: Mass of KOH = 0.14 mg = 0.00014 gm
Volume of KOH solution = 1.5 mL = 0.0015 L
Chapter 15 Solutions
World of Chemistry, 3rd edition
- (a) The following synthesis of the molecule shown in the circle has a major problem. What is this problem? (2 pts) 1) HBr (no peroxides) 2) H- NaNH2 Br 3) NaNH, 4) CH3Br 5) H2, Pd (b) Starting with the molecule shown below and any other materials with two carbons or less, write out an alternate synthesis of the circled molecule. More than one step is needed. Indicate the reagent(s) and the major product in all the steps in your synthesis. (5 pts) 2024 Fall Term (1) Organic Chemistry 1 (Lec) CHEM 22204 02[6386] (Hunter College) (c) Using the same starting material as in part (b) and any other materials win two carpons or less, write out syntheses of the circled molecules shown below. More than one step is needed in each case. Indicate the reagent(s) and the major product in all the steps in your synthesis. You may use reactions and products from your synthesis in part (b). (5 pts)arrow_forwardalt ons for Free Response Questions FRQ 1: 0/5 To spectrophotometrically determine the mass percent of cobalt in an ore containing cobalt and some inert materials, solutions with known [Co?) are prepared and absorbance of each of the solutions is measured at the wavelength of optimum absorbance. The data are used to create a calibration plot, shown below. 0.90- 0.80- 0.70 0.60 0.50 0.40- 0.30 0.20- 0.10- 0.00- 0.005 0.010 Concentration (M) 0.015 A 0.630 g sample of the ore is completely dissolved in concentrated HNO3(aq). The mixture is diluted with water to a final volume of 50.00 ml. Assume that all the cobalt in the ore sample is converted to Co2+(aq). a. What is the [Co2] in the solution if the absorbance of a sample of the solution is 0.74? 13 ✗ b. Calculate the number of moles of Co2+(aq) in the 50.00 mL solution. 0.008 mols Coarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY