
How many electrons can occupy the first shell? How many can occupy the second shell?

The number of electrons that can occupy first shell and second shell.
Answer to Problem 1RCQ
Solution:
Two electrons can occupy the first shell and eight electrons can occupy the second shell.
Explanation of Solution
In structure of Atom, electrons are found inside the shells. The shells represents the primary energy levels of an atom. Each shell has a set of sub-shells which represents various energy levels of the shells. Each sub-shell (except s-subshell) has further divided on the basis of energy levels – which are called “orbitals”.
Quantum numbers illustrates the possible energy levels and sub-energy levels of an atom. The four types of quantum numbers are – Principal quantum number, Angular quantum number, Magnetic quantum number and Spin quantum number.
Principal quantum number correlates to the possible number of shells in an atom. It is designated as ‘n’. The shells are represented as numerical positive integers 1, 2, 3, etc or alphabetically – K, L, M, N etc.
Angular quantum number gives the energy levels within the shell – which is also known as sub-shells. It also represents the shape of the sub-shells. Accordingly K-shell has only one sub-shell termed as‘s’. L-subshell has 2 sub-shells that are‘s’ and ‘p’. M-shell has 3 sub-shells that are termed as‘s’, ‘p’ and‘d’ and so on.
Magnetic quantum number explains about the possible energy levels of the sub-shells. They are called “orbitals”.
Spin quantum number represents the spin of the electron that occupy in the orbital.
According to Aufbau’s principle, electrons are occupied from the lowest energy level to highest energy level.
According to Hund’s rule, electrons are singly occupied in all the orbitals of the sub-shells and all those electrons have parallel spin. After the electrons are singly occupied, electrons further occupy the singly filled orbitals with opposite spin. This relates to Pauli’s exclusion principle which states an orbital can have only two electrons which must have opposite spins with respect to each other.
Each orbital can accommodate two electrons of opposite spins. The first shell has one s-orbital and 2 electrons are occupied in it. The second shell has 2 sub-shells – s and p. Six electrons are occupied in the 3 p-orbitals as two electrons per p-orbital. Further the p-subshell also has an s-orbital and 2 electrons can be occupied there. Totally 8 electrons can occupy the second shell.
Conclusion:
The number of electrons that can occupy first shell and second shell have been determined
Want to see more full solutions like this?
Chapter 15 Solutions
EP CONCEPTUAL PHYSICAL SCI.-MOD.MASTER.
Additional Science Textbook Solutions
Anatomy & Physiology (6th Edition)
Chemistry: Structure and Properties (2nd Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Microbiology with Diseases by Body System (5th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- 12. If all three collisions in the figure below are totally inelastic, which will cause more damage? (think about which collision has a larger amount of kinetic energy dissipated/lost to the environment? I m II III A. I B. II C. III m m v brick wall ע ע 0.5v 2v 0.5m D. I and II E. II and III F. I and III G. I, II and III (all of them) 2marrow_forwardCan you solve this 2 question teach me step by step and draw for mearrow_forwardFrom this question and answer can you explain how get (0,0,5) and (5,0,,0) and can you teach me how to solve thisarrow_forward
- Can you solve this 2 question and teach me using ( engineer method formula)arrow_forward11. If all three collisions in the figure below are totally inelastic, which brings the car of mass (m) on the left to a halt? I m II III m m ע ע ע brick wall 0.5v 2m 2v 0.5m A. I B. II C. III D. I and II E. II and III F. I and III G. I, II and III (all of them)arrow_forwardHow can you tell which vowel is being produced here ( “ee,” “ah,” or “oo”)? Also, how would you be able to tell for the other vowels?arrow_forward
- You want to fabricate a soft microfluidic chip like the one below. How would you go about fabricating this chip knowing that you are targeting a channel with a square cross-sectional profile of 200 μm by 200 μm. What materials and steps would you use and why? Disregard the process to form the inlet and outlet. Square Cross Sectionarrow_forward1. What are the key steps involved in the fabrication of a semiconductor device. 2. You are hired by a chip manufacturing company, and you are asked to prepare a silicon wafer with the pattern below. Describe the process you would use. High Aspect Ratio Trenches Undoped Si Wafer P-doped Si 3. You would like to deposit material within a high aspect ratio trench. What approach would you use and why? 4. A person is setting up a small clean room space to carry out an outreach activity to educate high school students about patterning using photolithography. They obtained a positive photoresist, a used spin coater, a high energy light lamp for exposure and ordered a plastic transparency mask with a pattern on it to reduce cost. Upon trying this set up multiple times they find that the full resist gets developed, and they are unable to transfer the pattern onto the resist. Help them troubleshoot and find out why pattern of transfer has not been successful. 5. You are given a composite…arrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forward
- An electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E=E0sin(kx−ωt)j^,where j^ is the unit vector in the y direction. If B0 is the amplitude of the magnetic field vector, find the complete expression for the magnetic field vector B→ of the wave. What is the Poynting vector S(x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction? Give your answer in terms of some or all of the variables E0, B0, k, x, ω, t, and μ0. Specify the direction of the Poynting vector using the unit vectors i^, j^, and k^ as appropriate. Please explain all stepsarrow_forwardAnother worker is performing a task with an RWL of only 9 kg and is lifting 18 kg, giving him an LI of 2.0 (high risk). Questions:What is the primary issue according to NIOSH?Name two factors of the RWL that could be improved to reduce risk.If the horizontal distance is reduced from 50 cm to 30 cm, how does the HM change and what effect would it have?arrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for z1z2∗. Find r and θ for z1/z2∗? Find r and θ for (z1−z2)∗/z1+z2∗. Find r and θ for (z1−z2)∗/z1z2∗ Please explain all steps, Thank youarrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





