
Write equilibrium constant expressions for the following reactions. For gases, use either pressures or concentrations.
- (a) 2 H2O2(g) ⇄ 2 H2O(g) + O2(g)
- (b) CO(g) + ½ O2g ⇄ CO2(g)
- (c) C(s) + CO2(g) ⇄ 2 CO(g)
- (d) NiO(s) + CO(g) ⇄ Ni(s) + CO2(g)
(a)

Interpretation: The equilibrium constant for the given reaction has to be identified.
Concept Introduction: At equilibrium the concentration of the reaction and the product is equated to a constant
If a reaction is as
The equilibrium constant
Answer to Problem 1PS
The equilibrium constant for the reaction is given below,
Explanation of Solution
The equilibrium constant for the reaction can be calculated as,
The product concentrations appear in the numerator and reactant concentrations appear in the denominator. Each concentration should be raised to a power equal to the stoichiometric coefficient in the balanced equation.
The equilibrium constant for the above reaction is given below,
(b)

Interpretation: The equilibrium constant for the given reaction has to be identified.
Concept Introduction: At equilibrium the concentration of the reaction and the product is equated to a constant
If a reaction is as
The equilibrium constant
Answer to Problem 1PS
The equilibrium constant for the reaction is given below,
Explanation of Solution
The equilibrium constant for the reaction can be calculated as,
The product concentrations appear in the numerator and reactant concentrations appear in the denominator. Each concentration should be raised to a power equal to the stoichiometric coefficient in the balanced equation.
The equilibrium constant for the above reaction is given below,
(c)

Interpretation: The equilibrium constant for the given reaction has to be identified.
Concept Introduction: At equilibrium the concentration of the reaction and the product is equated to a constant
If a reaction is as
The equilibrium constant
Answer to Problem 1PS
The equilibrium constant for the reaction is given below,
Explanation of Solution
The equilibrium constant for the reaction can be calculated as,
The product concentrations appear in the numerator and reactant concentrations appear in the denominator. Each concentration should be raised to a power equal to the stoichiometric coefficient in the balanced equation.
The equilibrium constant for the above reaction is given below,
(d)

Interpretation: The equilibrium constant for the given reaction has to be identified.
Concept Introduction: At equilibrium the concentration of the reaction and the product is equated to a constant
If a reaction is as
The equilibrium constant
Answer to Problem 1PS
The equilibrium constant for the reaction is given below,
Explanation of Solution
The equilibrium constant for the reaction can be calculated as,
The product concentrations appear in the numerator and reactant concentrations appear in the denominator. Each concentration should be raised to a power equal to the stoichiometric coefficient in the balanced equation.
The equilibrium constant for the above reaction is given below,
Want to see more full solutions like this?
Chapter 15 Solutions
Chemistry & Chemical Reactivity
Additional Science Textbook Solutions
SEELEY'S ANATOMY+PHYSIOLOGY
Campbell Biology (11th Edition)
Physical Science
Campbell Essential Biology (7th Edition)
Human Physiology: An Integrated Approach (8th Edition)
- Correct each molecule in the drawing area below so that it has the skeletal ("line") structure it would have if it were dissolved in a 0.1 M aqueous solution of HCI. If there are no changes to be made, check the No changes box under the drawing area. No changes. HO Explanation Check NH, 2 W O :□ G ©2025 M unter Accessibilityarrow_forwardAn expression for the root mean square velocity, vrms, of a gas was derived. Using Maxwell’s velocity distribution, one can also calculate the mean velocity and the most probable velocity (mp) of a collection of molecules. The equations used for these two quantities are vmean=(8RT/πM)1/2 and vmp=(2RT/M)1/2 These values have a fixed relationship to each other.(a) Arrange these three quantities in order of increasing magnitude.(b) Show that the relative magnitudes are independent of the molar mass of the gas.(c) Use the smallest velocity as a reference for establishing the order of magnitude and determine the relationship between the larger and smaller values.arrow_forwardThe reaction of solid dimethylhydrazine, (CH3)2N2H2, and liquefied dinitrogen tetroxide, N2O4, has been investigated for use as rocket fuel. The reaction produces the gases carbon dioxide (CO2), nitrogen (N2), and water vapor (H2O), which are ejected in the exhaust gases. In a controlled experiment, solid dimethylhydrazine was reacted with excess dinitrogen tetroxide, and the gases were collected in a closed balloon until a pressure of 2.50 atm and a temperature of 400.0 K were reached.(a) What are the partial pressures of CO2, N2, and H2O?(b) When the CO2 is removed by chemical reaction, what are the partial pressures of the remaining gases?arrow_forward
- One liter of chlorine gas at 1 atm and 298 K reacts completely with 1.00 L of nitrogen gas and 2.00 L of oxygen gas at the same temperature and pressure. A single gaseous product is formed, which fills a 2.00 L flask at 1.00 atm and 298 K. Use this information to determine the following characteristics of the product:(a) its empirical formula;(b) its molecular formula;(c) the most favorable Lewis formula based on formal charge arguments (the central atom is N);(d) the shape of the molecule.arrow_forwardHow does the square root mean square velocity of gas molecules vary with temperature? Illustrate this relationship by plotting the square root mean square velocity of N2 molecules as a function of temperature from T=100 K to T=300 K.arrow_forwardDraw product B, indicating what type of reaction occurs. F3C CF3 NH2 Me O .N. + B OMearrow_forward
- Benzimidazole E. State its formula. sState the differences in the formula with other benzimidazoles.arrow_forwardDraw product A, indicating what type of reaction occurs. F3C CN CF3 K2CO3, DMSO, H₂O2 Aarrow_forward19) Which metal is most commonly used in galvanization to protect steel structures from oxidation? Lead a. b. Tin C. Nickel d. Zinc 20) The following molecule is an example of a: R₁ R2- -N-R3 a. Secondary amine b. Secondary amide c. Tertiary amine d. Tertiary amidearrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning





