Write equilibrium constant expressions for the following reactions. For gases, use either pressures or concentrations.
- (a) 2 H2O2(g) ⇄ 2 H2O(g) + O2(g)
- (b) CO(g) + ½ O2g ⇄ CO2(g)
- (c) C(s) + CO2(g) ⇄ 2 CO(g)
- (d) NiO(s) + CO(g) ⇄ Ni(s) + CO2(g)
(a)
Interpretation: The equilibrium constant for the given reaction has to be identified.
Concept Introduction: At equilibrium the concentration of the reaction and the product is equated to a constant
If a reaction is as
The equilibrium constant
Answer to Problem 1PS
The equilibrium constant for the reaction is given below,
Explanation of Solution
The equilibrium constant for the reaction can be calculated as,
The product concentrations appear in the numerator and reactant concentrations appear in the denominator. Each concentration should be raised to a power equal to the stoichiometric coefficient in the balanced equation.
The equilibrium constant for the above reaction is given below,
(b)
Interpretation: The equilibrium constant for the given reaction has to be identified.
Concept Introduction: At equilibrium the concentration of the reaction and the product is equated to a constant
If a reaction is as
The equilibrium constant
Answer to Problem 1PS
The equilibrium constant for the reaction is given below,
Explanation of Solution
The equilibrium constant for the reaction can be calculated as,
The product concentrations appear in the numerator and reactant concentrations appear in the denominator. Each concentration should be raised to a power equal to the stoichiometric coefficient in the balanced equation.
The equilibrium constant for the above reaction is given below,
(c)
Interpretation: The equilibrium constant for the given reaction has to be identified.
Concept Introduction: At equilibrium the concentration of the reaction and the product is equated to a constant
If a reaction is as
The equilibrium constant
Answer to Problem 1PS
The equilibrium constant for the reaction is given below,
Explanation of Solution
The equilibrium constant for the reaction can be calculated as,
The product concentrations appear in the numerator and reactant concentrations appear in the denominator. Each concentration should be raised to a power equal to the stoichiometric coefficient in the balanced equation.
The equilibrium constant for the above reaction is given below,
(d)
Interpretation: The equilibrium constant for the given reaction has to be identified.
Concept Introduction: At equilibrium the concentration of the reaction and the product is equated to a constant
If a reaction is as
The equilibrium constant
Answer to Problem 1PS
The equilibrium constant for the reaction is given below,
Explanation of Solution
The equilibrium constant for the reaction can be calculated as,
The product concentrations appear in the numerator and reactant concentrations appear in the denominator. Each concentration should be raised to a power equal to the stoichiometric coefficient in the balanced equation.
The equilibrium constant for the above reaction is given below,
Want to see more full solutions like this?
Chapter 15 Solutions
Chemistry & Chemical Reactivity
Additional Science Textbook Solutions
SEELEY'S ANATOMY+PHYSIOLOGY
Campbell Biology (11th Edition)
Physical Science
Campbell Essential Biology (7th Edition)
Human Physiology: An Integrated Approach (8th Edition)
- For each of the following, indicate whether the arrow pushes are valid. Do we break any rules via the arrows? If not, indicate what is incorrect. Hint: Draw the product of the arrow and see if you still have a valid structure. a. b. N OH C. H N + H d. e. f. مه N COHarrow_forwardDecide which is the most acidic proton (H) in the following compounds. Which one can be removed most easily? a) Ha Нь b) Ha Нь c) CI CI Cl Ha Ньarrow_forwardProvide all of the possible resonanse structures for the following compounds. Indicate which is the major contributor when applicable. Show your arrow pushing. a) H+ O: b) c) : N :O : : 0 d) e) Оarrow_forward
- Draw e arrows between the following resonance structures: a) b) : 0: :0: c) :0: N t : 0: بار Narrow_forwardDraw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. Cl Substitution will not occur at a significant rate. Explanation Check :☐ O-CH + Х Click and drag to start drawing a structure.arrow_forwardDraw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. Cl C O Substitution will not occur at a significant rate. Explanation Check + O-CH3 Х Click and drag to start drawing a structure.arrow_forward
- ✓ aw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. C Cl HO–CH O Substitution will not occur at a significant rate. Explanation Check -3 ☐ : + D Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Cearrow_forwardPlease correct answer and don't used hand raitingarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Determine whether the following reaction is an example of a nucleophilic substitution reaction: Br OH HO 2 -- Molecule A Molecule B + Br 义 ollo 18 Is this a nucleophilic substitution reaction? If this is a nucleophilic substitution reaction, answer the remaining questions in this table. Which of the reactants is referred to as the nucleophile in this reaction? Which of the reactants is referred to as the organic substrate in this reaction? Use a ŏ + symbol to label the electrophilic carbon that is attacked during the substitution. Highlight the leaving group on the appropriate reactant. ◇ Yes O No O Molecule A Molecule B Molecule A Molecule B टेarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning