
Write equilibrium constant expressions for the following reactions. For gases, use either pressures or concentrations.
- (a) 2 H2O2(g) ⇄ 2 H2O(g) + O2(g)
- (b) CO(g) + ½ O2g ⇄ CO2(g)
- (c) C(s) + CO2(g) ⇄ 2 CO(g)
- (d) NiO(s) + CO(g) ⇄ Ni(s) + CO2(g)
(a)

Interpretation: The equilibrium constant for the given reaction has to be identified.
Concept Introduction: At equilibrium the concentration of the reaction and the product is equated to a constant
If a reaction is as
The equilibrium constant
Answer to Problem 1PS
The equilibrium constant for the reaction is given below,
Explanation of Solution
The equilibrium constant for the reaction can be calculated as,
The product concentrations appear in the numerator and reactant concentrations appear in the denominator. Each concentration should be raised to a power equal to the stoichiometric coefficient in the balanced equation.
The equilibrium constant for the above reaction is given below,
(b)

Interpretation: The equilibrium constant for the given reaction has to be identified.
Concept Introduction: At equilibrium the concentration of the reaction and the product is equated to a constant
If a reaction is as
The equilibrium constant
Answer to Problem 1PS
The equilibrium constant for the reaction is given below,
Explanation of Solution
The equilibrium constant for the reaction can be calculated as,
The product concentrations appear in the numerator and reactant concentrations appear in the denominator. Each concentration should be raised to a power equal to the stoichiometric coefficient in the balanced equation.
The equilibrium constant for the above reaction is given below,
(c)

Interpretation: The equilibrium constant for the given reaction has to be identified.
Concept Introduction: At equilibrium the concentration of the reaction and the product is equated to a constant
If a reaction is as
The equilibrium constant
Answer to Problem 1PS
The equilibrium constant for the reaction is given below,
Explanation of Solution
The equilibrium constant for the reaction can be calculated as,
The product concentrations appear in the numerator and reactant concentrations appear in the denominator. Each concentration should be raised to a power equal to the stoichiometric coefficient in the balanced equation.
The equilibrium constant for the above reaction is given below,
(d)

Interpretation: The equilibrium constant for the given reaction has to be identified.
Concept Introduction: At equilibrium the concentration of the reaction and the product is equated to a constant
If a reaction is as
The equilibrium constant
Answer to Problem 1PS
The equilibrium constant for the reaction is given below,
Explanation of Solution
The equilibrium constant for the reaction can be calculated as,
The product concentrations appear in the numerator and reactant concentrations appear in the denominator. Each concentration should be raised to a power equal to the stoichiometric coefficient in the balanced equation.
The equilibrium constant for the above reaction is given below,
Want to see more full solutions like this?
Chapter 15 Solutions
Chemistry & Chemical Reactivity
Additional Science Textbook Solutions
SEELEY'S ANATOMY+PHYSIOLOGY
Campbell Biology (11th Edition)
Physical Science
Campbell Essential Biology (7th Edition)
Human Physiology: An Integrated Approach (8th Edition)
- Which region(s) of the following phospholipid is/are hydrophobic? RO I hydro-water phobic-dislikes = Hydrophobic dislikes water ○ I only Il only I and III only II and IV only O II, III, and IV only III || IVarrow_forwardPredict the product of the following reactions: O 0= excess Х Кон ОН H+ H+ Iarrow_forwardHow many chiral centers/stereocenters are there in the following molecule? 1 2 3 4arrow_forward
- Which of these correspond to the molecule: 2,5-dimethylheptanearrow_forwardGiven the following data, determine the order of the reaction with respect to H2. H2(g) + 21Cl(g) → I2(g) + 2HCl(g) Experiment [H2] (torr) [ICI] (torr) Rate (M/s) 1 250 325 0.266 2 250 81 0.0665 3 50 325 0.266arrow_forwardWhich one of the following molecules is chiral? H- NH₂ H3C དང་།་ OH H HO H₂N HO- -H CHO -OH H HO- OH H- -H CH₂OH OHarrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning





