
Concept explainers
(a)
To explain: The steps of the reactions that have phosphorylation in glycolysis process.
Concept introduction: Glycolysis is a series of 10 enzyme-catalyzed reactions where one molecule of glucose is converted to two molecules of pyruvate. In this process, the total production of 2 ATP molecules and the reduction of 2 NAD+ to 2 NADH molecules occurs.
(a)

Answer to Problem 1E
Correct answer: The reactions 1, 3, 7, and 10 are the phosphorylation reactions in the glycolysis process.
Explanation of Solution
In glycolysis, 10 steps are involved to convert glucose to pyruvate; out of these, during four reactions, phosphorylation occurs.
In Reaction 1 of glycolysis, a phosphoryl group is transferred from ATP to glucose to form glucose-6-phosphate (G6P) in a catalytic reaction that is continued by hexokinase. In this reaction, kinase acts as an enzyme that transfers the phosphoryl groups between ATP and a metabolite. The metabolite serves as the phosphoryl group acceptor.
Reaction 1:
In Reaction 3 of glycolysis, phosphofructokinase (PFK) phosphorylates fructose-6-phosphate (F6P) to form fructose-1,6-biphosphate (FBP).
Reaction 3:
Reaction 7 of the glycolysis pathway yields ATP with 3-phosphoglycerate (3GP) in a reaction that is catalyzed by the enzyme phosphoglycerate kinase (PGK). In this reaction, reverse-phosphorylation occurs in the presence of kinase. From 1, 3-Bisphosphoglycerate, one phosphate group is transferred to 3-phosphoglycerate (3GP) and ATP.
Reaction 7:
In the final reaction, Reaction 10 of glycolysis, pyruvate kinase enhances the phosphoenolpyruvate in the presence of ADP to form pyruvate and ATP. The pyruvate kinase reaction is highly exergonic such that it gives more energy to drive ATP synthesis, a substrate-level phosphorylation reaction.
Reaction 10:
(b)
To explain: The reaction steps of glycolysis that are isomerization reactions.
(b)

Answer to Problem 1E
Correct answer: The reactions 2, 5, and 8 in glycolysis are isomerization reactions.
Explanation of Solution
Reaction 2 of glycolysis explains the conversion of glucose-6-phosphate (G6P) and fructose-6-phosphate (F6P) in the presence of phosphoglucose isomerase (PGI). This reaction represents isomerization of an aldose to a
Reaction 2:
Reaction 5 represents the products of the aldol cleavage reaction, where glyceraldehyde-3-phosphate is converted to dihydroxyacetone phosphate. In this reaction, interconversion occurs by an isomerization reaction with an enediol intermediate. Triose phosphate isomerase catalyzes this process in this reaction of glycolysis.
Reaction 5:
Reaction 8 of glycolysis represents the conversion of 3-phosphoglycerate (3PG) to 2-phosphoglycerate in the presence of phosphoglycerate mutase. This reaction also represents the isomerization reaction.
Reaction 8:
(c)
To explain: The steps of glycolysis that are the oxidation–reduction reactions.
(c)

Answer to Problem 1E
Correct answer: Reaction 6 in glycolysis is oxidation–reduction reaction.
Explanation of Solution
Reaction 6 of glycolysis represents the oxidation and phosphorylation of glyceraldehyde-3-phosphate (GAP) in the presence of NAD+ and Pi as catalyzed by glyceraldehyde-3-phosphate dehydrogenase to form 1, 3-Bisphosphoglycerate.
Reaction 6:
(d)
To explain: The steps of glycolysis that are dehydration reactions.
(d)

Answer to Problem 1E
Correct answer: Reaction 9 in glycolysis is a dehydration reaction.
Explanation of Solution
Reaction 9 of glycolysis explains the dehydration reaction in which 2-phosphoglycerate is dehydrated to phosphoenolpyruvate (PEP) in a reaction that is catalyzed by enolase.
Reaction 9:
(e)
To explain: The step of glycolysis that involves carbon–carbon bond cleavage.
(e)

Answer to Problem 1E
Correct answer: Reaction 4 of glycolysis is a carbon–carbon bond cleavage reaction.
Explanation of Solution
In Reaction 4 of the glycolysis pathway, aldolase catalyzes the cleavage of fructose-1, 6-biphosphate to form the two trioses: glyceraldehyde-3-phosphate (GAP) and dihydroxyacetone phosphate. This represents the carbon–carbon cleavage that occurs in retro-aldol condensation. The cleavage occurs in between C3 and C4 of fructose-1, 6-biphosphate.
Reaction 4:
Want to see more full solutions like this?
Chapter 15 Solutions
Fundamentals of Biochemistry: Life at the Molecular Level
- 1. Conceptual questions a. What dimensionless group describes the relative importance of convection versus diffusion. Explain the physical basis of this group. b. For mass transfer from a flowing fluid to a reactive surface, explain how convection increases the flux of solute to the surface.arrow_forwardAssessment +1501 pts /1600 Resources Solution ? Hint Sub bo Each pictured Lewis structure is invalid. Identify the error in each case. O Macmillan Learning :0▬▬0: Answer Bank wrong electron total :0- :F======F: octet-rule violation N :0:arrow_forward[s] mM V (M/s) Uninhibited 0.333 1.65 x 107 1.05 x 107 V (M/s) x 10' Inhibitor A V (M/s) x 107 Inhibitor B 0.794 x 107 0.40 1.86 x 107 1.21 x 107 0.893 x 107 0.50 2.13 x 107 1.43 x 107 1.02 x 107 0.666 2.49 x 107 1.74 x 107 1.19 x 107 1.0 2.99 x 107 2.22 x 107 1.43 x 107 2.0 3.72 x 107 3.08 x 107 1.79 x 107arrow_forward
- For a Michaelis-Menten reaction, k₁-5 x 10'/M-s, k.-2 x 10%/s, and k₂-4 x 10²/s. a) Calculate the Ks and KM for this reaction. b) Does substrate binding achieve equilibrium or steady state?arrow_forwardAssume that an enzyme-catalyzed reaction follows the scheme shown: E+S SES →E + P k₁ = 1 x 109/M-s k-1=2.5 x 10%/s k₂ = 3.4 x 107/s What is the dissociation constant for the enzyme-substrate, K,? What is the Michaelis constant, Km, for this enzyme? What is the turnover number, Keat, for this enzyme? What is the catalytic efficiency for the enzyme? If the initial Et concentration is 0.25mM, what is Vmax?arrow_forwardAn enzyme lowers the activation energy, (AG) of a reaction from 50.0 kcal/mol to 40.0 kcal/mol. Calulate the catalytic power at 310K. (R-1.987x10 kcal/mol)arrow_forward
- Draw a typical axodendritic synapse, including a specific neurotransmitter of your choice, its associated postsynaptic receptors (indicating whether they are ionotropic or metabotropic), and any associated reuptake transporters or degradation enzymes. Please include a description of what specific steps would occur as an action potential reaches the axonal terminal.arrow_forwardGive a full arrow pushing mechanism of the spontaneous redox reaction between NAD+/NADH and oxaloacetate/malate. Please include diagram drawing of the mechanism! (Thank You!)arrow_forward18. Which one of the compounds below is the major organic product obtained from the following series of reactions? 1. BH3 2. H2O2, NaOH H₂CrO4 CH2N2 oro ororos A B C D Earrow_forward
- 17. Which one of the compounds below is the major organic product obtained from the following series of reactions? CI benzyl alcohol OH PBr3 Mg 1. CO2 SOCl2 ? ether 2. H+, H₂O CI Cl HO OH CI Cl A B C D Earrow_forward14. What is the IUPAC name of this compound? A) 6-hydroxy-4-oxohexanenitrile B) 5-cyano-3-oxo-1-pentanol C) 5-cyano-1-hydroxy-3-pentanone D) 1-cyano-5-hydroxy-3-pentanone E) 5-hydroxy-3-oxopentanenitrile HO. CNarrow_forward13. What is the IUPAC name of this compound? A) 5-hydroxy-3,3-dimethylpentanoic acid B) 3,3-dimethylpentanoic acid C) 3,3-dimethyl-1-oxo-1,5-pentanediol D) 1,5-dihydroxy-3,3-dimethylpentanal E) 4-hydroxy-2,2-dimethylbutanoic acid HO OHarrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON





