
Concept explainers
The central angles and the corresponding chord lengthsfor a compound curve which connects two tangents.

Answer to Problem 17P
For the first curve central angle and chord length is shown in table below,
Station | Deflection angle | Chord length |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
For the second curve central angle and chord length is shown in table below,
Station | Deflection angle | Chord length |
| | |
| | |
| | |
| | |
Explanation of Solution
Given information:
Intersection angle
Angle of first deflection curve
Radius of first curve
Radius of second curve
PCC station
Calculation:
Deflection for second curve is given by,
Tangent length of first curve is given by,
Similarly tangent length for second curve is given by,
Length of first curve is given by,
Length of second curve is given by,
Station of first curve at PC is given by,
The station of PCis the point of curve according to the standards of AASHTOit is calculated by dividing the station when it reaches above
Station at point of tangency is given by,
For the first curve calculate degree of first curve is given by,
Deflection angle for first full station is given by,
Deflection angle is given by,
For the first curve chord length is given by,
Deflection angle for last full station is given by,
For the first curve central angle and chord length is shown in table below,
Station | Deflection angle | Chord length |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
For the second curve calculate degree of second curve is given by,
Deflection angle for first full station is given by,
Deflection angle is given by,
For the second curve chord length is given by,
Deflection angle for last full station is given by,
For the second curve central angle and chord length is shown in table below,
Station | Deflection angle | Chord length |
| | |
| | |
| | |
| | |
Want to see more full solutions like this?
Chapter 15 Solutions
Traffic and Highway Engineering
- The system in Fig. consists of 1200 m of 5 cm cast-iron pipe e=0.26mm, two 45° and four 90° elbows, a globe valve, and a sharp exit into a reservoir. If the elevation at point 1 is 400 m, what gage pressure is required at point 1 to deliver 0.005 m3/s of water into the reservoir? U= 10-6m² 1 * sec -, K 45° elbows= 0.2, K 90° flanged = 0.2, K globe valve 10, K Sharp exit=1 G Elevation 500 m 45° Open globe 45° Sharp exitarrow_forward: The 6-cm-diameter pipe in Fig. contains glycerin [specific gravity 0.95], flowing at a rate of 6 m³/h. Verify that the flow is laminar. For the pressure measurements shown, is the flow up or down? What is the indicated head loss for these pressures? 3.7 atm B 2.1 atm 12 m Aarrow_forwardFind the discharge if K entrance =0.1, Kvalve-1, e=0.26mm, U= 1× 10-6m² ? sec 5 m Water at 20°C 6 cm D=5cm, L 2 m Open jet Butterfly valve DC 107 at 30°arrow_forward
- What level (h) must be maintained in Fig to deliver a flow rate of Q=0.425L/sec in commercial-steel pipe e=0.1mm, U= 1 * 10-6m²/sec? Water at 20°C h L=24m D=120mmarrow_forward17-24. Design a water distribution system for the Village of Waffle (Figure P-17-24). The specific de- sign requirements of the client are as follows: 128 m Figure P-17-24 Village of Waffle. -120 m 120 m Open in new tab 00 N ☐ Pancake Road D Apartments ☐ DD. D ☐ 128 m Coffee Creek DODQ00000 Eggs Road State Road 00000 ㅁㅁㅁㅁㅁㅁ Syrup River _128 m 136 m 120 m ㅁㅁㅁ Syrup River 112 m 104 m 100-Year flood -112 m 120 m- 128 m Water tower Grd El 137 m 100 m Share a. Fire protection to be provided by the water distribution system. b. Minimum water pressure at top of apartment building is to be 240 kPa. c. Maximum system pressure is to be 550 kPa. The following assumptions may be used in the design: a. Each of the four apartment buildings is occupied by 50 residents. Each apartment building is four stories high. Each story is 3 m high. b. Each house is occupied by three residents. c. Average daily demand for the village is 500 Lpcd. d. Peaking factor is 6.2 for peak hour demand. e. Needed fire flow…arrow_forwardTwo group of students are collecting traffic data at the two sections A and B 200 meters apartalong a highway. Group A shows that 5 vehicles pass those sections at interval of 8, 9, 10, 11and 13 sections respectively. If the speeds of the vehicles were 80, 72, 64, 56 and 48 kmph.Compute : (i) the time mean speed (ii) space mean speed, and (b)what will be the averagedensity of the above traffic streamarrow_forward
- A person entering public transport center to purchase intercity Bus ticket. There is two ticket line to purchase tickets. Each ticket purchase takes an average of 12 seconds. The average arrival rate is 3 persons/minute. Find (a) Probability of having one traveler in the system, (b) the average length of queue, (c)average waiting time in queue, (d) average time spend in system. Arrival follows Poisson distribution and service time follows negative exponential distribution.arrow_forwardUse recommended referencing style (APA) for all materials you used in the presentation of the report. Question 1 Ivan Institute has secured funds to construct an oval-like lecture hall at their new campus at a cost of 3 million United States Dollars. As a consultant of the project, you have a mandate to package the project for the most qualified contractor. Carry out the procurement process from advertisement to awardarrow_forwardThe calibrated Greenberg model is of the form, v = 32ln(295/k),where k is in veh/mile and v is in mile/hr.(a)Sketch the v-k relationship and discuss the obviousdisadvantage of the model. b)Determine (i) the jam density, (ii) the capacity or maximum flowand (iii) the values of speed and density at capacity. (c)Sketch the q-k and v-q relationshipsand indicate the points obtained in (b) above.arrow_forward
- Vehicles begin to arrive at an amusement park entrance at 8:00 A.M. at a rate of 1000veh/h. Some of these vehicles have electronic identifiers that allow them to enter the park immediately, beginning at 8:00 A.M., without stopping (they are billed remotely). All vehicles without such identifiers stop at a single processing booth, but they wait in line until it opens at 8:10 A.M. Once open, the operator processes vehicles at μ(t) = 8 + 0.5t [where μ(t) is in vehicles per minute and t is in minutes after 8:10 A.M.]. An observer notes that at 8:25 there are exactly 20 vehicles in the queue. What percent of arriving vehicles have electronic identifiers and what is the total delay (from the 8:00 A.M. until the queue clears) for those vehicles without the electronic identifiers (assume D/D/1 queuing)?arrow_forward1. For truss given in a figure below, determine reactions, and forces in all truss members. De- termine forces using two methods independently: (a) method of joints, and (b) method of sections. Compare your results and verify that your solutions are accurate. Assume that force F = 10kN. 2m 2m 2m ▼F ▼F 4m ▼F 4marrow_forward1) Determine if the existing sedimentation basins are sufficient to accommodate the projected future capacity. If not, design upgrades to the sedimentation basins. A) Current Capacity: 22.5 MGD B) Future Capacity: 34.5 MGD for 110,000 residents C) If not, design upgrades to the sedimentation basins. 2) Specify the design flow rate, the type of basin (circular vs. rectangular) 3) Specify the basin dimensions (length, width, water depth or diameter and water depth). 4) Specify the dimensions of the launders (if applicable) and the length of the weir.arrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
