
(a)
Interpretation:
The effect on the equilibrium if the partial pressure of
Concept Introduction:
Le Chatelier’s principle: If equilibrium is disturbed by changing conditions, the system will moves the equilibrium to reverse the change.
The effect of pressure on chemical equilibria:
Pressure – If the reaction consists of only liquid and solid reactants and products, pressure has no effect in the equilibrium.
In gas reactions if the number of moles has no change then there will be no effect by pressure on equilibrium.
If pressure increases then equilibrium will shift to the direction having less number of molecules and if pressure decreases system will shift to the direction having more number of molecules.
(b)
Interpretation:
The effect on the equilibrium if
Concept Introduction:
Le Chatelier’s principle: If equilibrium is disturbed by changing conditions, the system will moves the equilibrium to reverse the change.
The effect of concentration on chemical equilibria:
Concentration – Equilibrium will be affected by changing the concentration of reactant or product. If we increase the concentration of reactants, system will try to reverse the change by favouring forward reaction and thus increase the concentration of products. Like-wise adding products increase yield of reactants.
(c)
Interpretation:
The effect on the equilibrium if
Concept Introduction:
Le Chatelier’s principle: If equilibrium is disturbed by changing conditions, the system will moves the equilibrium to reverse the change.
The effect of concentration on chemical equilibria:
Concentration – Equilibrium will be affected by changing the concentration of reactant or product. If we increase the concentration of reactants, system will try to reverse the change by favouring forward reaction and thus increase the concentration of products. Like-wise adding products increase yield of reactants.
(d)
Interpretation:
The effect on the equilibrium if water is added to the mixture has to be given.
Concept Introduction:
Le Chatelier’s principle: If equilibrium is disturbed by changing conditions, the system will moves the equilibrium to reverse the change.
The effect of concentration on chemical equilibria:
Concentration – Equilibrium will be affected by changing the concentration of reactant or product. If we increase the concentration of reactants, system will try to reverse the change by favouring forward reaction and thus increase the concentration of products. Like-wise adding products increase yield of reactants.
(e)
Interpretation:
The effect on the equilibrium if a catalyst is added has to be given.
Concept Introduction:
Catalyst: The catalyst is a chemical substance that increases the
In a
In a chemical reaction, the species that present in right side is denoted as product that results from the reactant.
(f)
Interpretation:
The effect on the equilibrium if the temperature is decreased has to be given.
Concept Introduction:
Le Chatelier’s principle: If equilibrium is disturbed by changing conditions, the system will moves the equilibrium to reverse the change.
The effect of temperature on chemical equilibria:
Temperature – When the temperature increases equilibrium will shift in the endothermic direction, in the direction that absorbs heat. When the temperature decreases equilibrium will shift in the exothermic direction, in the direction that releases heat.
(g)
Interpretation:
The effect on the equilibrium if more sunlight falls on the plants has to be given.
Concept Introduction:
Le Chatelier’s principle: If equilibrium is disturbed by changing conditions, the system will moves the equilibrium to reverse the change.
The effect of temperature on chemical equilibria:
Temperature – When the temperature increases equilibrium will shift in the endothermic direction, in the direction that absorbs heat. When the temperature decreases equilibrium will shift in the exothermic direction, in the direction that releases heat.

Want to see the full answer?
Check out a sample textbook solution
Chapter 15 Solutions
EBK GENERAL CHEMISTRY: THE ESSENTIAL CO
- What is the IUPAC name of the following compound? CH₂CH₂ H CI H₂CH₂C H CH₂ Selected Answer: O (35,4R)-4 chloro-3-ethylpentane Correctarrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forward
- Look at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forwardGiven 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- 3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forwardConcentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





