University Physics with Modern Physics (14th Edition)
University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 15, Problem 15.69P

A uniform cylindrical steel wire, 55.0 cm long and 1.14 nun in diameter, is fixed at both ends. To what tension must it be adjusted so that, when vibrating in its first overtone, it produces the note D-sharp of frequency 311 Hz? Assume that it stretches an insignificant amount. (Hint: See Table 12.1.)

Blurred answer
Students have asked these similar questions
A uniform cylindrical steel wire, 55.0 cm long and 1.14 mm in diameter, is fixed at both ends. To what tension must it be adjusted so that, when vibrating in its first overtone, it produces the note D-sharp of frequency 311 Hz? Assume that it stretches an insignificant amount.
A uniform cylindrical steel wire, 53.0 cm long and 1.16 mm in diameter, is fixed at both ends. To what tension must it be adjusted so that, when vibrating in its first overtone, it produces the note D^# of frequency 311 Hz? Assume that it stretches an insignificant amount. (Hint: The density of the steel is 7800 kg/m^3.) Express your answer using two significant figures. (In Newtons)
A steel wire in a piano has a length of 0.900 m and a mass of 3.800 ✕ 10^-3 kg. To what tension must this wire be stretched so that the fundamental vibration corresponds to middle C (fC = 261.6 Hz on the chromatic musical scale)?        Needs Complete typed solution with 100 % accuracy.

Chapter 15 Solutions

University Physics with Modern Physics (14th Edition)

Ch. 15 - What kinds of energy are associated with waves on...Ch. 15 - The amplitude of a wave decreases gradually as the...Ch. 15 - Prob. 15.5DQCh. 15 - The speed of ocean waves depends on the depth of...Ch. 15 - Is it possible to have a longitudinal wave on a...Ch. 15 - For transverse waves on a string, is the wave...Ch. 15 - The four strings on a violin have different...Ch. 15 - Prob. 15.10DQCh. 15 - Prob. 15.11DQCh. 15 - Prob. 15.12DQCh. 15 - In a transverse wave on a string, the motion of...Ch. 15 - Energy can be transferred along a string by wave...Ch. 15 - Prob. 15.15DQCh. 15 - If you stretch a rubber band and pluck it, you...Ch. 15 - A musical interval of an octave corresponds to a...Ch. 15 - By touching a string lightly at its center while...Ch. 15 - Prob. 15.19DQCh. 15 - Violins are short instruments, while cellos and...Ch. 15 - What is the purpose of the frets on a guitar? In...Ch. 15 - The speed of sound in air at 20C is 344 m/s. (a)...Ch. 15 - BIO Audible Sound. Provided the amplitude is...Ch. 15 - Prob. 15.3ECh. 15 - BIO Ultrasound Imaging. Sound having frequencies...Ch. 15 - Prob. 15.5ECh. 15 - A fisherman notices that his boat is moving up and...Ch. 15 - Transverse waves on a siring have wave speed 8.00...Ch. 15 - Prob. 15.8ECh. 15 - Prob. 15.9ECh. 15 - A water wave traveling in a straight line on a...Ch. 15 - A sinusoidal wave is propagating along a stretched...Ch. 15 - CALC Speed of Propagation vs. Particle Speed. (a)...Ch. 15 - A transverse wave on a string has amplitude 0.300...Ch. 15 - Prob. 15.14ECh. 15 - One end of a horizontal rope is attached to a...Ch. 15 - With what tension must a rope with length 2.50 m...Ch. 15 - Prob. 15.17ECh. 15 - A 1.50-m string of weight 0.0125 N is tied to the...Ch. 15 - A thin, 75.0-cm wire has a mass of 16.5 g. One end...Ch. 15 - A heavy rope 6.00 m long and weighing 29.4 N is...Ch. 15 - A simple harmonic oscillator at the point x = 0...Ch. 15 - A piano wire with mass 3.00 g and length 80.0 cm...Ch. 15 - Prob. 15.23ECh. 15 - Prob. 15.24ECh. 15 - A jet plane at takeoff can produce sound of...Ch. 15 - Threshold of Pain. You are investigating the...Ch. 15 - Energy Output. By measurement you determine that...Ch. 15 - A fellow student with a mathematical bent tells...Ch. 15 - At a distance of 7.00 1012 m from a star, the...Ch. 15 - Reflection. A wave pulse on a siring has the...Ch. 15 - Reflection. A wave pulse on a string has the...Ch. 15 - Reflection. A wave pulse on a string has the...Ch. 15 - Suppose that the left-traveling pulse in Exercise...Ch. 15 - Two pulses are moving in opposite directions at...Ch. 15 - Interference of Rectangular Pulses. Figure E15.35...Ch. 15 - CALC Adjacent antinodes of a standing wave on a...Ch. 15 - Prob. 15.37ECh. 15 - Prob. 15.38ECh. 15 - A wire with mass 40.0 g is stretched so that its...Ch. 15 - A piano tuner stretches a steel piano wire with a...Ch. 15 - CALC A thin, taut string tied at both ends and...Ch. 15 - Prob. 15.42ECh. 15 - Prob. 15.43ECh. 15 - Prob. 15.44ECh. 15 - Prob. 15.45ECh. 15 - Prob. 15.46ECh. 15 - Guitar String. One of the 63.5-cm-long strings of...Ch. 15 - A transverse wave on a rope is given by...Ch. 15 - CALC A transverse sine wave with an amplitude of...Ch. 15 - CP A 1750-N irregular beam is hanging horizontally...Ch. 15 - Three pieces of string, each of length L, are...Ch. 15 - Weightless Ant. An ant with mass m is standing...Ch. 15 - You must determine the length of a long, thin wire...Ch. 15 - Music. You are designing a two-string instrument...Ch. 15 - CP A 5.00-m, 0.732-kg wire is used to support two...Ch. 15 - A uniform, 8.40-kg, spherical shell 50.0 cm in...Ch. 15 - For a string stretched between two supports, two...Ch. 15 - A 0.800-m-long string with linear mass density =...Ch. 15 - CP A 1.80-m-long uniform bar that weighs 638 N is...Ch. 15 - A continuous succession of sinusoidal wave pulses...Ch. 15 - A horizontal wire is tied to supports at each end...Ch. 15 - CP A vertical, 1.20-m length of 18-gauge (diameter...Ch. 15 - A sinusoidal transverse wave travels on a string....Ch. 15 - A vibrating string 50.0 cm long is under a tension...Ch. 15 - Clothesline Nodes. Cousin Throckmorton is once...Ch. 15 - A strong string of mass 3.00 g and length 2.20 m...Ch. 15 - A thin string 2.50 m in length is stretched with a...Ch. 15 - CALC A guitar string is vibrating in its...Ch. 15 - A uniform cylindrical steel wire, 55.0 cm long and...Ch. 15 - A string with both ends held fixed is vibrating in...Ch. 15 - CP A large rock that weighs 164.0 N is suspended...Ch. 15 - Holding Up Under Stress. A string or rope will...Ch. 15 - Tuning an Instrument. A musician tunes the...Ch. 15 - Prob. 15.74PCh. 15 - DATA In your physics lab, an oscillator is...Ch. 15 - DATA You are measuring the frequency dependence of...Ch. 15 - CP CALC A deep-sea diver is suspended beneath the...Ch. 15 - BIO WAVES ON VOCAL FOLDS. In the larynx, sound is...Ch. 15 - BIO WAVES ON VOCAL FOLDS. In the larynx, sound is...Ch. 15 - BIO WAVES ON VOCAL FOLDS. In the larynx, sound is...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY