Concept explainers
A uniform, 8.40-kg, spherical shell 50.0 cm in diameter has four small 2.00-kg masses attached to its outer surface and equally spaced around it. This combination is spinning about an axis running through the center of the sphere and two of the small masses (Fig. P10.56). What friction torque is needed to reduce its angular speed from 75.0 rpm to 50.0 rpm in 30.0 s?
Figure P10.56
Learn your wayIncludes step-by-step video
Chapter 15 Solutions
University Physics with Modern Physics (14th Edition)
Additional Science Textbook Solutions
Introductory Chemistry (6th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Microbiology: An Introduction
Microbiology: An Introduction
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Anatomy & Physiology (6th Edition)
- A solid sphere of mass m and radius r rolls without slipping along the track shown in Figure P10.83. It starts from rest with the lowest point of the sphere at height h above the bottom of the loop of radius R, much larger than r. (a) What is the minimum value of h (in terms of R) such that the sphere completes the loop? (b) What are the force components on the sphere at the point P if h = 3R? Figure P10.83arrow_forwardThe system shown in Figure P13.18 consisting of four particles connected by massless, rigid rods is rotating around the x axis with an angular speed of 2.50 rad/s. The particle masses are m1 = 1.00 kg, m2 = 4.00 kg, m3 = 2.00 kg, and m4 = 3.00 kg. a. What is the rotational inertia of the system around the x axis? b. Using Kr=12I2 (Eq. 13.10), what is the total rotational kinetic energy of the system? c. What is the tangential speed of each of the four particles? d. Considering the system as four particles in motion and using K=i12mvi2, what is the total kinetic energy of the system? How does this value compare with the result obtained in part (b)? FIGURE P13.18arrow_forwardThe uniform thin rod in Figure P8.47 has mass M = 3.50 kg and length L = 1.00 m and is free to rotate on a friction less pin. At the instant the rod is released from rest in the horizontal position, find the magnitude of (a) the rods angular acceleration, (b) the tangential acceleration of the rods center of mass, and (c) the tangential acceleration of the rods free end. Figure P8.47 Problems 47 and 86.arrow_forward
- A uniform solid sphere of mass m and radius r is releasedfrom rest and rolls without slipping on a semicircular ramp ofradius R r (Fig. P13.76). Ifthe initial position of the sphereis at an angle to the vertical,what is its speed at the bottomof the ramp? FIGURE P13.76arrow_forwardA uniform disk of mass M = 3.00 kg and radius r = 22.0 cm is mounted on a motor through its center. The motor accelerates the disk uniformly from rest by exerting a constant torque of 1.00 Nm. a. What is the time required for the disk to reach an angular speed of 8.00 102 rpm? b. What is the number of revolutions through which the disk spins before reaching this angular speed?arrow_forwardA square plate with sides of length 4.0 m can rotate about an axle passing through its center of mass and perpendicular to the plate as shown in Figure P14.36. There are four forces acting on the plate at different points. The rotational inertia of the plate is 24 kgm2. Is the plate in equilibrium? FIGURE P14.36arrow_forward
- A square plate with sides 2.0 m in length can rotatearound an axle passingthrough its center of mass(CM) and perpendicular toits surface (Fig. P12.53). There are four forces acting on the plate at differentpoints. The rotational inertia of the plate is 24 kg m2. Use the values given in the figure to answer the following questions. a. Whatis the net torque acting onthe plate? b. What is theangular acceleration of the plate? FIGURE P12.53 Problems 53 and 54.arrow_forwardA ball of mass M = 5.00 kg and radius r = 5.00 cm isattached to one end of a thin,cylindrical rod of length L = 15.0 cm and mass m = 0.600 kg.The ball and rod, initially at restin a vertical position and freeto rotate around the axis shownin Figure P13.70, are nudgedinto motion. a. What is therotational kinetic energy of thesystem when the ball and rodreach a horizontal position? b. What is the angular speed of the ball and rod when they reach a horizontal position? c. What is the linear speed of the centerof mass of the ball when the ball and rod reach a horizontalposition? d. What is the ratio of the speed found in part (c) tothe speed of a ball that falls freely through the same distance? FIGURE P13.70arrow_forwardA tennis ball is a hollow sphere with a thin wall. It is set rolling without slipping at 4.03 m/s on a horizontal section of a track as shown in Figure P10.33. It rolls around the inside of a vertical circular loop of radius r = 45.0 cm. As the ball nears the bottom of the loop, the shape of the track deviates from a perfect circle so that the ball leaves the track at a point h = 20.0 cm below the horizontal section. (a) Find the balls speed at the top of the loop. (b) Demonstrate that the ball will not fall from the track at the top of the loop. (c) Find the balls speed as it leaves the track at the bottom. (d) What If? Suppose that static friction between ball and track were negligible so that the ball slid instead of rolling. Describe the speed of the ball at the top of the loop in this situation. (e) Explain your answer to part (d). Figure P10.33arrow_forward
- A compact disc rotates at 500 rev/min. If the diameter of the disc is 120 mm, (a) what is the tangential speed of a point at the edge of the disc? (b) At a point halfway to the center of the disc?arrow_forwardSuppose when Earth was created, it was not rotating. However, after the application of a uniform torque after 6 days, it was rotating at 1 rev/day. (a) What was the angular acceleration during the 6 days? (b) What torque was applied to Earth during this period? (c) What force tangent to Earth at its equator would produce this torque?arrow_forwardFigure P10.16 shows the drive train of a bicycle that has wheels 67.3 cm in diameter and pedal cranks 17.5 cm long. The cyclist pedals at a steady cadence of 76.0 rev/min. The chain engages with a front sprocket 15.2 cm in diameter and a rear sprocket 7.00 cm in diameter. Calculate (a) the speed of a link of the chain relative to the bicycle frame, (b) the angular speed of the bicycle wheels, and (c) the speed of the bicycle relative to the road. (d) What pieces of data, if any, are not necessary for the calculations? Figure P10.16arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning