Interpretation:
Skeletal structural formula three
Concept Introduction:
Isomers are the compounds that have same molecular formula but different structural formula. The main difference lies in the way the atoms are arranged in the structure. Isomers have different chemical and physical properties even when they have same molecular formula. This is known as Isomerism.
If there is difference only in the connectivity of the atoms in the molecule, then it is known as constitutional isomerism. The isomers are known as constitutional isomers. They will have same molecular formula and same
Aldehydes and ketones have constitutional isomers. Functional group isomerism exists between aldehyde and ketones. Aldehydes and ketones that have same degree of saturation and same number of carbon atoms are functional group isomers. In aldehyde, skeletal isomerism is possible where the group attached to the carbonyl carbon atom connectivity is changed. In ketones positional isomerism is possible where the carbonyl group is moved within the carbon chain.
The structural representation of organic compound can be done in 2D and 3D. In two-dimensional representation, there are four types of representation in which an organic compound can be drawn. They are,
- • Expanded structural formula
- • Condensed structural formula
- • Skeletal structural formula
- • Line-angle structural formula
Structural formula which shows all the atoms in a molecule along with all the bonds that is connecting the atoms present in the molecule is known as Expanded structural formula.
Structural formula in which grouping of atoms are done and in which the central atoms along with the other atoms are connected to them are treated as group is known as Condensed structural formula.
Structural formula that shows the bonding between carbon atoms alone in the molecule ignoring the hydrogen atoms being shown explicitly is known as Skeletal structural formula.
Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
EBK GENERAL, ORGANIC, AND BIOLOGICAL CH
- What functional group distinguishes each of the following hydrocarbon derivatives? a. halohydrocarbons b. alcohols c. ethers d. aldehydes e. ketones f. carboxylic acids g. esters h. amines Give examples of each functional group. What prefix or suffix is used to name each functional group? What are the bond angles in each? Describe the bonding in each functional group. What is the difference between a primary, secondary, and tertiary alcohol? For the functional groups in ah, when is a number required to indicate the position of the functional group? Carboxylic acids are often written as RCOOH. What does COOH indicate and what does R indicate? Aldehydes are sometimes written as RCHO. What does CHO indicate?arrow_forwardIdentify the functional group of the given molecule and indicate the classification if there is any. Example: monosubstituted alkene primary alcohol carboxylic acidarrow_forwardThe molecular formula of the following compound indicates which class of Compound. C3H16 O Alcohol O Alkene A Alkyne O Alkanearrow_forward
- Write out the structural formula for three ethers that have the formula C4H10Oarrow_forwardIdentify the characteristics of phenolic compounds and alcohols,explain how they act, and evaluate their primary uses.arrow_forwardDraw an ester with the formula C3H6O2 AND Draw the structures for a specific aldehyde and a specific ketone that have the formula C3H6Oarrow_forward
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning