
(a)
Interpretation:
The molecular geometry, polarity and the strongest intermolecular force present in
Concept introduction:
Geometry of a molecule is the arrangement of atoms of a molecule in space. Geometry is dependent on the number of bond pairs, lone pairs and valence electrons of central atom. Polarity is defined as the tendency of atoms of a molecule to attract the electrons of the bond pairs towards itself.

Answer to Problem 15.3TC
The geometry, polarity and intermolecular force present in
Geometry is tetrahedral.
Polarity of methane is zero. It means
The strongest intermolecular force present is induced dipole.
Explanation of Solution
Methane,
Structure of methane is shown below.
Figure 1
Therefore, methane is tetrahedral, non-polar and strongest intermolecular forces are induced dipole.
Geometry of methane is tetrahedral methane is non polar and the strongest intermolecular force present in methane is induced dipole.
(b)
Interpretation:
The geometry, polarity and the strongest intermolecular force present in
Concept introduction:
Geometry of a molecule of a molecule is the arrangements of atoms of a molecule in space. Geometry is depends on the number of bond pairs, lone pairs and valence electrons of central atom. Polarity is defined as the tendency of atoms of a molecule to attract the bond pairs towards itself.

Answer to Problem 15.3TC
The geometry, polarity and the strongest intermolecular force present in
Geometry is linear.
Polarity of carbon dioxide is zero. It means
Strongest intermolecular force present is induced dipole.
Explanation of Solution
Carbon dioxide
Structure of carbon dioxie is shown below.
Figure 2
Therefore, carbon dioxide is linear, non-polar and the strongest intermolecular force present is induced dipole.
Geometry of carbon dioxide is linear, polarity is zero means non polar molecule and the strongest intermolecular force present is induced dipole.
(c)
Interpretation:
The geometry, polarity and the strongest intermolecular force present in
Concept introduction:
Geometry of a molecule of a molecule is the arrangements of atoms of a molecule in space. Geometry is depends on the number of bond pairs, lone pairs and valence electrons of central atom. Polarity is defined as the tendency of atoms of a molecule to attract the bond pairs towards itself.

Answer to Problem 15.3TC
The geometry, polarity and intermolecular force present in
Geometry is bent.
Polarity of
Strongest intermolecular force present in
Explanation of Solution
Oxygen difluoride
Structure of oxygen difluoride is shown below.
Figure 3
Therefore, oxygen difluoride is bent, polar, and the strongest intermolecular force present is dipole-dipole.
Geometry of oxygen difluoride is bent, polarity is non-zero means polar molecule and the strongest intermolecular force present is dipole dipole interaction.
(d)
Interpretation:
The geometry, polarity and the strongest intermolecular force present in
Concept introduction:
Geometry of a molecule of a molecule is the arrangements of atoms of a molecule in space. Geometry is depends on the number of bond pairs, lone pairs and valence electrons of central atom. Polarity is defined as the tendency of atoms of a molecule to attract the bond pairs towards itself.

Answer to Problem 15.3TC
The geometry, polarity and intermolecular force present in
Geometry is bent.
Polarity of
The strongest intermolecular force present is hydrogen bonding.
Explanation of Solution
Chloric acid
Structure of chloric acid is shown below.
Figure 4
Therefore, chloric acid is bent, polar and the strongest force present is hydrogen bonding.
Geometry of chloric acid is bent, polarity is non-zero means polar molecule and the strongest intermolecular force present is hydrogen bonding.
Want to see more full solutions like this?
Chapter 15 Solutions
EBK INTRODUCTORY CHEMISTRY: AN ACTIVE L
- Which representation(s) show polymer structures that are likely to result in rigid, hard materials and those that are likely to result in flexible, stretchable, soft materials?arrow_forward3. Enter the molecular weight of the product obtained from the Williamson Ether Synthesis? OH OH & OH excess CH3l Ag₂Oarrow_forwardPlease answer 1, 2 and 3 on the endarrow_forward
- In the box below, specify which of the given compounds are very soluble in polar aprotic solvents. You may select more than one compound. Choose one or more: NaCl NH4Cl CH3CH2CH2CH2CH2CN CH3CH2OH hexan-2-one NaOH CH3SCH3arrow_forwardOn the following structure, select all of the atoms that could ACCEPT a hydrogen bond. Ignore possible complications of aromaticity. When selecting be sure to click on the center of the atom.arrow_forwardRank the compounds below from lowest to highest melting point.arrow_forward
- 18 Question (1 point) Draw the line structure form of the given partially condensed structure in the box provided. :ÖH HC HC H2 ΙΩ Н2 CH2 CH3 CH3 partially condensed formarrow_forwardsomeone else has already submitted the same question on here and it was the incorrect answer.arrow_forwardThe reaction: 2NO2(g) ⇌ N2O4(g) is an exothermic reaction, ΔH=-58.0 kJ/molrxn at 0°C the KP is 58.If the initial partial pressures of both NO2(g) and N2O4(g) are 2.00 atm:A) Is the reaction at equilibrium? If not, what is the value of Q? B) Which direction will the reaction go to reach equilibrium? C) Use an ICE table to find the equilibrium pressures.arrow_forward
- The dissociation of the weak acid, nitrous acid, HNO2, takes place according to the reaction: HNO2 (aq) ⇌ H+(aq) + NO2–(aq) K=7.2 X 10-4 When 1.00 mole of HNO2 is added to 1.00 L of water, the H+ concentration at equilibrium is 0.0265 M.A) Calculate the value of Q if 1.00 L of water is added? B) How will reaction shift if 1.00 L of water is added?arrow_forwardSuppose a certain copolymer elastomeric material “styrene-butadiene rubber”) contains styrene ("S") monomers –(C8H8)– and butadiene ("B") monomers –(C4H6)– and that their numerical ratio S:B = 1:8. What is the mass ratio mS:mB of the two monomers in the material? What is the molecular mass M of a macromolecule of this copolymer with degree of polymerization n = 60,000? Data: AC = 12.01 u, AH = 1.008 u.arrow_forwardLab Questions from Lab: Gravimetric Determination of Calcium as CaC2O4•H2O What is the purpose of the methyl red indicator? Why does a color change to yellow tell you that the reaction is complete? Why is the precipitate rinsed with ice-cold water in step 4? Why not room temperature or hot water? Why is it important that the funnels be placed in a desiccator before weighing (steps 1 and 5)?arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning





