
Concept explainers
Interpretation:
The amount of energy must be removed from the tray to reduce the temperature from
Concept introduction:
The amount of energy required to change the state of a substance is known as enthalpy. It is the different in the energy of final and initial state of a substance. The negative and positive sign of enthalpy indicates the energy released and energy absorbed, respectively, during the phase change.

Answer to Problem 110E
Amount of energy that must be removed from the tray to reduce the temperature from
Amount of energy that must be removed to cool the water from
Amount of energy needed to freeze the water is
Amount of energy removed to when temperature of ice is decreased from
Total energy removed or released is
Explanation of Solution
The amount of heat required to decrease the temperature of aluminium from
Where,
•
•
•
•
The mass of the sample is
The given final temperature is
The given initial temperature is
The specific heat of aluminium is
Substitute the values of mass of the sample, final temperature, initial temperature and specific heat of aluminium in equation (1).
Negative sign shows that energy is released during decrease in temperature of aluminium from
Therefore, amount of heat required to decrease the temperature of aluminium from
The amount of energy removed to decrease the temperature of water from
The given value of mass of water
The given value of final temperature
The given value of initial temperature
The specific heat of water is
Substitute the values of mass, final temperature, initial temperature and specific heat of water in equation (1).
Therefore, amount of energy removed to decrease the temperature of cool water from
The amount of energy required for phase transformation is calculated by the formula shown below.
Where,
•
The heat of fusion of water is
Substitute the mass and heat of fusion in equation (2).
Negative sign indicates that energy is during the freezing process.
Therefore, amount of energy required for phase transformation is
The amount of energy removed to decrease the temperature of water from
The given value of mass of water
The given value of final temperature
The given value of initial temperature
The specific heat of ice is
Substitute the mass, final temperature, initial temperature and specific heat of water in equation (1).
Therefore, amount of energy removed to decrease the temperature of ice from
The total amount of energy released is shown below.
The amount of heat released to decrease the temperature of aluminium tray from
Want to see more full solutions like this?
Chapter 15 Solutions
EBK INTRODUCTORY CHEMISTRY: AN ACTIVE L
- please help me with my homeworkarrow_forwardhelparrow_forwardThe temperature on a sample of pure X held at 1.25 atm and -54. °C is increased until the sample boils. The temperature is then held constant and the pressure is decreased by 0.42 atm. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 2 0 0 200 400 temperature (K) Xarrow_forward
- QUESTION: Answer Question 5: 'Calculating standard error of regression' STEP 1 by filling in all the empty green boxes *The values are all provided in the photo attached*arrow_forwardpressure (atm) 3 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. 0 0 200 temperature (K) 400 аarrow_forwarder your payment details | bar xb Home | bartleby x + aleksogi/x/isl.exe/1o u-lgNskr7j8P3jH-1Qs_pBanHhviTCeeBZbufuBYT0Hz7m7D3ZcW81NC1d8Kzb4srFik1OUFhKMUXzhGpw7k1 O States of Matter Sketching a described thermodynamic change on a phase diagram 0/5 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 1 3- 0- 0 200 Explanation Check temperature (K) 400 X Q Search L G 2025 McGraw Hill LLC. All Rights Reserved Terms of Use Privacy Cearrow_forward
- 5.arrow_forward6.arrow_forward0/5 alekscgi/x/sl.exe/1o_u-IgNglkr7j8P3jH-IQs_pBaHhvlTCeeBZbufuBYTi0Hz7m7D3ZcSLEFovsXaorzoFtUs | AbtAURtkqzol 1HRAS286, O States of Matter Sketching a described thermodynamic change on a phase diagram The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. 3 pressure (atm) + 0- 0 5+ 200 temperature (K) 400 Explanation Check X 0+ F3 F4 F5 F6 F7 S 2025 McGraw Hill LLC All Rights Reserved. Terms of Use Privacy Center Accessibility Q Search LUCR + F8 F9 F10 F11 F12 * % & ( 5 6 7 8 9 Y'S Dele Insert PrtSc + Backsarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning




