
Concept explainers
Interpretation:
The amount of energy must be removed from the tray to reduce the temperature from
Concept introduction:
The amount of energy required to change the state of a substance is known as enthalpy. It is the different in the energy of final and initial state of a substance. The negative and positive sign of enthalpy indicates the energy released and energy absorbed, respectively, during the phase change.

Answer to Problem 110E
Amount of energy that must be removed from the tray to reduce the temperature from
Amount of energy that must be removed to cool the water from
Amount of energy needed to freeze the water is
Amount of energy removed to when temperature of ice is decreased from
Total energy removed or released is
Explanation of Solution
The amount of heat required to decrease the temperature of aluminium from
Where,
•
•
•
•
The mass of the sample is
The given final temperature is
The given initial temperature is
The specific heat of aluminium is
Substitute the values of mass of the sample, final temperature, initial temperature and specific heat of aluminium in equation (1).
Negative sign shows that energy is released during decrease in temperature of aluminium from
Therefore, amount of heat required to decrease the temperature of aluminium from
The amount of energy removed to decrease the temperature of water from
The given value of mass of water
The given value of final temperature
The given value of initial temperature
The specific heat of water is
Substitute the values of mass, final temperature, initial temperature and specific heat of water in equation (1).
Therefore, amount of energy removed to decrease the temperature of cool water from
The amount of energy required for phase transformation is calculated by the formula shown below.
Where,
•
The heat of fusion of water is
Substitute the mass and heat of fusion in equation (2).
Negative sign indicates that energy is during the freezing process.
Therefore, amount of energy required for phase transformation is
The amount of energy removed to decrease the temperature of water from
The given value of mass of water
The given value of final temperature
The given value of initial temperature
The specific heat of ice is
Substitute the mass, final temperature, initial temperature and specific heat of water in equation (1).
Therefore, amount of energy removed to decrease the temperature of ice from
The total amount of energy released is shown below.
The amount of heat released to decrease the temperature of aluminium tray from
Want to see more full solutions like this?
Chapter 15 Solutions
EBK INTRODUCTORY CHEMISTRY: AN ACTIVE L
- Predict the major organic product(s), if any, of the following reactions. Assume all reagents are in excess unless otherwise indicated.arrow_forwardHow many signals would you expect to find in the 1 H NMR spectrum of each given compound? Part 1 of 2 2 Part 2 of 2 HO 5 ☑ Х IIIIII***** §arrow_forwardA carbonyl compound has a molecular ion with a m/z of 86. The mass spectra of this compound also has a base peak with a m/z of 57. Draw the correct structure of this molecule. Drawingarrow_forward
- Can you draw this using Lewis dot structures and full structures in the same way they are so that I can better visualize them and then determine resonance?arrow_forwardSynthesize the following compound from cyclohexanol, ethanol, and any other needed reagentsarrow_forwardFor a titration of 20.00 mL of 0.0500 M H2SO4 with 0.100 M KOH, calculate the pH at each of the following volume of KOH used in the titration: 1) before the titration begin; 2) 10.00 mL; 3) 20.00 mL; 4) 30.00 mL. Ka2 = 1.20×10-2 for H2SO4.arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s) Be sure to account for all bond-breaking and bond-making steps Problem 73 of 10 Drawing Amows ro HO Donearrow_forward12. Synthesize the following target molecules (TMs) using the specified starting materials. .CI a) HO3S SM TM b) HO- SMarrow_forwardFor a titration of 20.00 mL of 0.0500 M H2SO4 with 0.100 M KOH, calculate the pH at each of the following volume of KOH used in the titration: 1) before the titration begin; 2) 10.00 mL; 3) 20.00 mL; 4) 30.00 mL. Ka2 = 1.20×10-2 for H2SO4.arrow_forward
- Write the systematic name of each organic molecule: structure name show work. don't give Ai generated solutionarrow_forwardShow work with explanation needed. Don't give Ai generated solutionarrow_forwardA Elschboard Part of SpeechT-D Alt Leaming App app.aktiv.com Curved arrows are used to illustrate the flow of electrons. Using the provided resonance structures, draw the curved electron- pushing arrows to show the interconversion between resonance hybrid contributors. Be sure to account for all bond-breaking and bond-making steps. Include all lone pairs and formal charges in the structures. Problem 45 of 10 I Select to Add Arrows N Please selarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning




