About half of the hydrochloric acid produced annually in the United States (3.0 billion pounds) is used in metal pickling. This process involves the removal of metal oxide layers from metal surfaces to prepare them for coating. (a) Write the overall and net ionic equations for the reaction between iron(III) oxide, which represents the rust layer over iron, and HCl. Identify the Brønsted acid and base. (b) Hydrochloric acid is also used to remove scale (which is mostly CaCO 3 ) from water pipes (see Chemistry in Action essay “An Undesirable Precipitation Reaction” in Section 4.2). Hydrochloric acid reacts with calcium carbonate in two stages; the first stage forms the bicarbonate ion, which then reacts further to form carbon dioxide. Write equations for these two stages and for the overall reaction. (c) Hydrochloric acid is used to recover oil from the ground. It dissolves rocks (often CaCO 3 ) so that the oil can flow more easily. In one process, a 15 percent (by mass) HCl solution is injected into an oil well to dissolve the rocks. If the density of the acid solution is 1.073 g/mL, what is the pH of the solution?
About half of the hydrochloric acid produced annually in the United States (3.0 billion pounds) is used in metal pickling. This process involves the removal of metal oxide layers from metal surfaces to prepare them for coating. (a) Write the overall and net ionic equations for the reaction between iron(III) oxide, which represents the rust layer over iron, and HCl. Identify the Brønsted acid and base. (b) Hydrochloric acid is also used to remove scale (which is mostly CaCO 3 ) from water pipes (see Chemistry in Action essay “An Undesirable Precipitation Reaction” in Section 4.2). Hydrochloric acid reacts with calcium carbonate in two stages; the first stage forms the bicarbonate ion, which then reacts further to form carbon dioxide. Write equations for these two stages and for the overall reaction. (c) Hydrochloric acid is used to recover oil from the ground. It dissolves rocks (often CaCO 3 ) so that the oil can flow more easily. In one process, a 15 percent (by mass) HCl solution is injected into an oil well to dissolve the rocks. If the density of the acid solution is 1.073 g/mL, what is the pH of the solution?
Solution Summary: The author explains that the net ionic equation should be written for the reaction between iron oxide and HCl.
About half of the hydrochloric acid produced annually in the United States (3.0 billion pounds) is used in metal pickling. This process involves the removal of metal oxide layers from metal surfaces to prepare them for coating. (a) Write the overall and net ionic equations for the reaction between iron(III) oxide, which represents the rust layer over iron, and HCl. Identify the Brønsted acid and base. (b) Hydrochloric acid is also used to remove scale (which is mostly CaCO3) from water pipes (see Chemistry in Action essay “An Undesirable Precipitation Reaction” in Section 4.2). Hydrochloric acid reacts with calcium carbonate in two stages; the first stage forms the bicarbonate ion, which then reacts further to form carbon dioxide. Write equations for these two stages and for the overall reaction. (c) Hydrochloric acid is used to recover oil from the ground. It dissolves rocks (often CaCO3) so that the oil can flow more easily. In one process, a 15 percent (by mass) HCl solution is injected into an oil well to dissolve the rocks. If the density of the acid solution is 1.073 g/mL, what is the pH of the solution?
Carbohydrates- Draw out the Hawthorne structure for a sugar from the list given in class. Make sure to write out all atoms except for carbons within the ring. Make sure that groups off the carbons in the ring are in the correct orientation above or below the plane. Make sure that bonds are in the correct orientation. Include the full name of the sugar.
You can draw out your curve within the text box or upload a drawing below.
How many milliliters of 97.5(±0.5) wt% H2SO4 with a density of 1.84(±0.01) g/mL will you need to prepare 2.000 L of 0.110 M H2SO4?
If the uncertainty in delivering H2SO4 is ±0.01 mL, calculate the absolute uncertainty in the molarity (0.110 M). Assume there is negligible uncertainty in the formula mass of H2SO4 and in the final volume (2.000 L) and assume random error.
Don't used hand raiting and don't used Ai solution
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell