The top end of a spring is held fixed. A block is hung on the bottom end as in Figure OQ15.13a, and the frequency f of the oscillation of the system is measured. The block, a second identical block, and the spring are carried up in a space shuttle to Earth orbit. The two blocks are attached to the ends of the spring. The spring is compressed without making adjacent coils touch (Fig. OQ15.13b), and the system is released to oscillate while floating within the shuttle cabin (Fig. OQ15.13C). What is the frequency of oscillation for this system in terms of f ? (a) f /2 (b) f / √2 (c) f (d) √2/ (e) 2 f
The top end of a spring is held fixed. A block is hung on the bottom end as in Figure OQ15.13a, and the frequency f of the oscillation of the system is measured. The block, a second identical block, and the spring are carried up in a space shuttle to Earth orbit. The two blocks are attached to the ends of the spring. The spring is compressed without making adjacent coils touch (Fig. OQ15.13b), and the system is released to oscillate while floating within the shuttle cabin (Fig. OQ15.13C). What is the frequency of oscillation for this system in terms of f ? (a) f /2 (b) f / √2 (c) f (d) √2/ (e) 2 f
Solution Summary: The author explains that the frequency of oscillations of the system is sqrt2f, which is contradictory.
The top end of a spring is held fixed. A block is hung on the bottom end as in Figure OQ15.13a, and the frequency f of the oscillation of the system is measured. The block, a second identical block, and the spring are carried up in a space shuttle to Earth orbit. The two blocks are attached to the ends of the spring. The spring is compressed without making adjacent coils touch (Fig. OQ15.13b), and the system is released to oscillate while floating within the shuttle cabin (Fig. OQ15.13C). What is the frequency of oscillation for this system in terms of f? (a) f/2 (b) f/ √2 (c) f (d) √2/ (e) 2f
A skateboarder with his board can be modeled as a particle of mass 80.0 kg, located at his center of mass. As shown in the figure below, the skateboarder starts from rest in a crouching position at one lip of a half-pipe (point). On his descent, the skateboarder moves without friction so
that his center of mass moves through one quarter of a circle of radius 6.20 m.
i
(a) Find his speed at the bottom of the half-pipe (point Ⓡ).
m/s
(b) Immediately after passing point Ⓑ, he stands up and raises his arms, lifting his center of mass and essentially "pumping" energy into the system. Next, the skateboarder glides upward with his center of mass moving in a quarter circle of radius 5.71 m, reaching point D. As he
passes through point ①, the speed of the skateboarder is 5.37 m/s. How much chemical potential energy in the body of the skateboarder was converted to mechanical energy when he stood up at point Ⓑ?
]
(c) How high above point ① does he rise?
m
A 31.0-kg child on a 3.00-m-long swing is released from rest when the ropes of the swing make an angle of 29.0° with the vertical.
(a) Neglecting friction, find the child's speed at the lowest position.
m/s
(b) If the actual speed of the child at the lowest position is 2.40 m/s, what is the mechanical energy lost due to friction?
]
Chapter 15 Solutions
Physics for Scientists and Engineers, Technology Update, Hybrid Edition (with Enhanced WebAssign Multi-Term LOE Printed Access Card for Physics)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.