Concept explainers
Arrange each of the following in order of increasing acidity. You may need to use a couple of rules to decide the order for a given series. Explain the reasoning you use in each case.
- a HBrO2, HBrO3, HBrO
- b H2TeO3, H2SO3, H2SeO3
- c HI, SbH3, H2Te
- d H2S, HBr, H2Se
- e HClO2, HClO3, HBrO2
(a)
Interpretation:
Each of the given set of acids, in the order of increasing acidity has to be arranged.
Concept introduction:
Acid:
According to Bronsted-Lowry theory, a species which donates a proton in a proton transfer-reaction is said to be an acid.
Base:
According to Bronsted-Lowry theory, a species which accepts a proton in a proton transfer-reaction is said to be base.
Strong acid:
According to Arrhenius theory, a compound or a substance which completely ionized in a aqueous solution to give a hydronium ion and anion is said to be strong acid.
Strong base:
According to Arrhenius theory, a compound or a substance which completely ionized in a aqueous solution to give a hydroxide ion and cation is said to be strong base.
Answer to Problem 15.119QP
The order of increasing acidity is
Explanation of Solution
For the given species the order of increasing acidity is
(b)
Interpretation:
Each of the given set of acids, in the order of increasing acidity has to be arranged.
Concept introduction:
Acid:
According to Bronsted-Lowry theory, a species which donates a proton in a proton transfer-reaction is said to be an acid.
Base:
According to Bronsted-Lowry theory, a species which accepts a proton in a proton transfer-reaction is said to be base.
Strong acid:
According to Arrhenius theory, a compound or a substance which completely ionized in a aqueous solution to give a hydronium ion and anion is said to be strong acid.
Strong base:
According to Arrhenius theory, a compound or a substance which completely ionized in a aqueous solution to give a hydroxide ion and cation is said to be strong base.
Answer to Problem 15.119QP
The order of increasing acidity is
Explanation of Solution
For the given species the order of increasing acidity is
(c)
Interpretation:
Each of the given set of acids, in the order of increasing acidity has to be arranged.
Concept introduction:
Acid:
According to Bronsted-Lowry theory, a species which donates a proton in a proton transfer-reaction is said to be an acid.
Base:
According to Bronsted-Lowry theory, a species which accepts a proton in a proton transfer-reaction is said to be base.
Strong acid:
According to Arrhenius theory, a compound or a substance which completely ionized in a aqueous solution to give a hydronium ion and anion is said to be strong acid.
Strong base:
According to Arrhenius theory, a compound or a substance which completely ionized in a aqueous solution to give a hydroxide ion and cation is said to be strong base.
Answer to Problem 15.119QP
The order of increasing acidity is
Explanation of Solution
For the given species the order of increasing acidity is
(d)
Interpretation:
Each of the given set of acids, in the order of increasing acidity has to be arranged.
Concept introduction:
Acid:
According to Bronsted-Lowry theory, a species which donates a proton in a proton transfer-reaction is said to be an acid.
Base:
According to Bronsted-Lowry theory, a species which accepts a proton in a proton transfer-reaction is said to be base.
Strong acid:
According to Arrhenius theory, a compound or a substance which completely ionized in a aqueous solution to give a hydronium ion and anion is said to be strong acid.
Strong base:
According to Arrhenius theory, a compound or a substance which completely ionized in a aqueous solution to give a hydroxide ion and cation is said to be strong base.
Answer to Problem 15.119QP
The order of increasing acidity is
Explanation of Solution
For the given species the order of increasing acidity is
(e)
Interpretation:
Each of the given set of acids, in the order of increasing acidity has to be arranged.
Concept introduction:
Acid:
According to Bronsted-Lowry theory, a species which donates a proton in a proton transfer-reaction is said to be an acid.
Base:
According to Bronsted-Lowry theory, a species which accepts a proton in a proton transfer-reaction is said to be base.
Strong acid:
According to Arrhenius theory, a compound or a substance which completely ionized in a aqueous solution to give a hydronium ion and anion is said to be strong acid.
Strong base:
According to Arrhenius theory, a compound or a substance which completely ionized in a aqueous solution to give a hydroxide ion and cation is said to be strong base.
Answer to Problem 15.119QP
The order of increasing acidity is
Explanation of Solution
For the given species the order of increasing acidity is
Want to see more full solutions like this?
Chapter 15 Solutions
Bundle: General Chemistry, Loose-leaf Version, 11th + OWLv2, 4 terms (24 months) Printed Access Card
- MATERIALS. Differentiate between interstitial position and reticular position.arrow_forwardFor each of the following, indicate whether the arrow pushes are valid. Do we break any rules via the arrows? If not, indicate what is incorrect. Hint: Draw the product of the arrow and see if you still have a valid structure. a. b. N OH C. H N + H d. e. f. مه N COHarrow_forwardDecide which is the most acidic proton (H) in the following compounds. Which one can be removed most easily? a) Ha Нь b) Ha Нь c) CI CI Cl Ha Ньarrow_forward
- Provide all of the possible resonanse structures for the following compounds. Indicate which is the major contributor when applicable. Show your arrow pushing. a) H+ O: b) c) : N :O : : 0 d) e) Оarrow_forwardDraw e arrows between the following resonance structures: a) b) : 0: :0: c) :0: N t : 0: بار Narrow_forwardDraw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. Cl Substitution will not occur at a significant rate. Explanation Check :☐ O-CH + Х Click and drag to start drawing a structure.arrow_forward
- Draw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. Cl C O Substitution will not occur at a significant rate. Explanation Check + O-CH3 Х Click and drag to start drawing a structure.arrow_forward✓ aw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. C Cl HO–CH O Substitution will not occur at a significant rate. Explanation Check -3 ☐ : + D Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Cearrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Don't used hand raiting and don't used Ai solutionarrow_forwardDetermine whether the following reaction is an example of a nucleophilic substitution reaction: Br OH HO 2 -- Molecule A Molecule B + Br 义 ollo 18 Is this a nucleophilic substitution reaction? If this is a nucleophilic substitution reaction, answer the remaining questions in this table. Which of the reactants is referred to as the nucleophile in this reaction? Which of the reactants is referred to as the organic substrate in this reaction? Use a ŏ + symbol to label the electrophilic carbon that is attacked during the substitution. Highlight the leaving group on the appropriate reactant. ◇ Yes O No O Molecule A Molecule B Molecule A Molecule B टेarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning