The equilibrium constant for the given reaction has to be calculated. Concept Information: Acid ionization constant K a : Acids ionize in water. Strong acids ionize completely whereas weak acids ionize to some limited extent. The degree to which a weak acid ionizes depends on the concentration of the acid and the equilibrium constant for the ionization. The ionization of a weak acid HA can be given as follows, HA (aq) → H + (aq) +A - (aq) The equilibrium expression for the above reaction is given below. K a = [ H + ][A - ] [ HA] Where, K a is acid ionization constant, [ H + ] is concentration of hydrogen ion [ A - ] is concentration of acid anion [ HA] is concentration of the acid Autoionization of water: The equation of equilibrium for autoionization of water is, H 2 O → H + + OH - K w = [H + ][OH - ] The equilibrium expression for water at 25 o C is, [H + ][OH - ]= 1 × 10 -14 Taking negative logarithm on both sides, we get − log ( [H + ][OH - ])= -log(1 × 10 -14 ) ( − log [H + ])+(-log[OH - ])= 14 ) The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation, pH + pOH = 14, at 25 o C As pOH and pH are opposite scale, the total of both has to be equal to 14. Therefore, K w = [H + ][OH - ] =1 × 10 -14 To Calculate: The equilibrium constant for the given reaction
The equilibrium constant for the given reaction has to be calculated. Concept Information: Acid ionization constant K a : Acids ionize in water. Strong acids ionize completely whereas weak acids ionize to some limited extent. The degree to which a weak acid ionizes depends on the concentration of the acid and the equilibrium constant for the ionization. The ionization of a weak acid HA can be given as follows, HA (aq) → H + (aq) +A - (aq) The equilibrium expression for the above reaction is given below. K a = [ H + ][A - ] [ HA] Where, K a is acid ionization constant, [ H + ] is concentration of hydrogen ion [ A - ] is concentration of acid anion [ HA] is concentration of the acid Autoionization of water: The equation of equilibrium for autoionization of water is, H 2 O → H + + OH - K w = [H + ][OH - ] The equilibrium expression for water at 25 o C is, [H + ][OH - ]= 1 × 10 -14 Taking negative logarithm on both sides, we get − log ( [H + ][OH - ])= -log(1 × 10 -14 ) ( − log [H + ])+(-log[OH - ])= 14 ) The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation, pH + pOH = 14, at 25 o C As pOH and pH are opposite scale, the total of both has to be equal to 14. Therefore, K w = [H + ][OH - ] =1 × 10 -14 To Calculate: The equilibrium constant for the given reaction
Solution Summary: The author explains that the equilibrium constant for the given reaction has to be calculated. The degree to which a weak acid ionizes depends on the concentration of the acid
The acid-base chemistry of both EDTA and EBT are important to ensuring that the reactions proceed as desired, thus the pH is controlled using a buffer. What percent of the EBT indicator will be in the desired HIn2- state at pH = 10.5. pKa1 = 6.2 and pKa2 = 11.6 of EBT
CUE COLUMN
NOTES
(A. Determine
Stereoisomers it has
⑤ Identify any meso
B
compounds
cl
Br
cl
-c-c-c-c-¿-
1
CI
C-
|
2,4-Dichloro-3-bromopentane
The acid-base chemistry of both EDTA and EBT are important to ensuring that the reactions proceed as desired, thus the pH is controlled using a buffer. What percent of the EBT indicator will be in the desired HIn2- state at pH = 10.5. pKa1 = 6.2 and pKa2 = 11.6 of EBT
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell