Chemistry: Structure and Properties Plus Mastering Chemistry with Pearson eText -- Access Card Package (2nd Edition) (New Chemistry Titles from Niva Tro)
2nd Edition
ISBN: 9780134436524
Author: Nivaldo J. Tro
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 15, Problem 104E
Consider the simple one-step reaction:
Since the reaction occurs in a single step, the forward reaction has a rate of kfor[A] and the reverse reaction has a rate of krev[B]. What happens to the rate of the forward reaction when we increase the concentration of A? How does this explain the reason behind Le Chătelier’s principle?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Chemistry: Structure and Properties Plus Mastering Chemistry with Pearson eText -- Access Card Package (2nd Edition) (New Chemistry Titles from Niva Tro)
Ch. 15 - How does a developing fetus get oxygen in the...Ch. 15 - What is dynamic equilibrium? Why is it called...Ch. 15 - Give the general expression for the equilibrium...Ch. 15 - What is the significance of the equilibrium...Ch. 15 - What happens to the value of the equilibrium...Ch. 15 - If two reactions sum to an overall reaction, and...Ch. 15 - Explain the difference between Kcand Kp. For a...Ch. 15 - What units should you use when expressing...Ch. 15 - Why do we omit the concentrations of solids and...Ch. 15 - Does the value of the equilibrium constant depend...
Ch. 15 - Explain how you might deduce the equilibrium...Ch. 15 - What is the definition of the reaction quotient ()...Ch. 15 - What is the value of when each reactant and...Ch. 15 - Prob. 14ECh. 15 - Many equilibrium calculations involve finding the...Ch. 15 - In equilibrium problems involving equilibrium...Ch. 15 - What happens to a chemical system at equilibrium...Ch. 15 - What is the effect of a change in concentration of...Ch. 15 - What is the effect of a change in volume on a...Ch. 15 - What is the effect of temperature change on a...Ch. 15 - Write an expression for the equilibrium constant...Ch. 15 - Find and fix each mistake in the equilibrium...Ch. 15 - When the reaction comes to equilibrium, will the...Ch. 15 - Ethene (C2H4) can be halogenated by this reaction:...Ch. 15 - H2 and I2 are combined in a flask and allowed to...Ch. 15 - A chemist trying to synthesize a particular...Ch. 15 - This reaction has an equilibrium constant of...Ch. 15 - This reaction has an equilibrium constant of...Ch. 15 - Prob. 29ECh. 15 - Use the following reactions and their equilibrium...Ch. 15 - Calculate Kc for reaction a. I2(g)2I(g)Kp=6.261022...Ch. 15 - Calculate Kpfor each reaction. a. N2O4(g)2NO2(g)...Ch. 15 - Write an equilibrium expression for each chemical...Ch. 15 - Find and fix the mistake in the equilibrium...Ch. 15 - Consider the reaction: CO(g)+2H2(g)CH3OH(g) An...Ch. 15 - Consider the reaction: NH4HS(s)NH3(g)+H2S(g) An...Ch. 15 - Consider the reaction: N2(g)+3H2(g)2NH3(g)...Ch. 15 - Consider the reaction: H2(g)+I2(g)2HI(g) Complete...Ch. 15 - Consider the reaction: 2NO(g)+Br2(g)2NOBr(g)Kp=...Ch. 15 - Consider the reaction:...Ch. 15 - For the reaction A(g)2B(g) , a reaction vessel...Ch. 15 - For the reaction 2A(g)B(g)+2C(g) , a reaction...Ch. 15 - Consider the reaction:...Ch. 15 - Consider the reaction: SO2Cl2(g)SO2+Cl2(g) A...Ch. 15 - Consider the reaction: H2(g)+I2(g)2HI(g) A...Ch. 15 - Consider the reaction. CO(g)+2H2(g)CH3OH(g) A...Ch. 15 - Consider the reaction: NH4HS(s)NH3(g)+H2S(g) At a...Ch. 15 - Consider the reaction:...Ch. 15 - Silver sulfate dissolves in water according to the...Ch. 15 - Nitrogen dioxide reacts with itself according to...Ch. 15 - Consider the reaction and the associated...Ch. 15 - Consider the reaction and the associated...Ch. 15 - For the reaction Kc= 0.513 at 500K. N2O4(g)2NO2(g)...Ch. 15 - For the reaction, Kc= 255 at 1000 K...Ch. 15 - Consider the reaction: NiO(s)+CO(g)Ni(s)+CO2(g)...Ch. 15 - Consider the reaction: CO(g)+H2O(g)CO2(g)+H2(g)Kc=...Ch. 15 - Consider the reaction: HC 2 H 3 O 2 (aq)+ H 2 O(l)...Ch. 15 - Prob. 58ECh. 15 - Consider the reaction:...Ch. 15 - Consider the reaction:...Ch. 15 - Consider the reaction: A(g)B(g)+C(g) Find the...Ch. 15 - Consider the reaction: A(g)2B(g) Find the...Ch. 15 - Consider this reaction at equilibrium:...Ch. 15 - Consider this reaction at equilibrium:...Ch. 15 - Consider this reaction at equilibrium:...Ch. 15 - Prob. 66ECh. 15 - Each reaction is allowed to come to equilibrium,...Ch. 15 - Prob. 68ECh. 15 - This reaction is endothermic: C(s)+CO2(g)2CO(g)...Ch. 15 - This reaction is exothermic:...Ch. 15 - Coal, which is primarily carbon, can be converted...Ch. 15 - Coal can be used to generate hydrogen gas (a...Ch. 15 - Carbon monoxide replaces oxygen in oxygenated...Ch. 15 - Nitrogen monoxide is a pollutant in the lower...Ch. 15 - The reaction CO2(g)+C(s)2CO(g) has Kp= 5.78 at...Ch. 15 - A mixture of water and graphite is heated to 600...Ch. 15 - At 650 K, the reaction MgCO3(s)MgO(s)+CO2(g) has...Ch. 15 - A system at equilibrium contains I2(g) at a...Ch. 15 - Consider the exothermic reaction:...Ch. 15 - Consider the endothermic reaction:...Ch. 15 - Consider the reaction: H2(g)+I2(g)2HI(g) A...Ch. 15 - Prob. 82ECh. 15 - Prob. 83ECh. 15 - Prob. 84ECh. 15 - The system described by the reaction:...Ch. 15 - A reaction vessel at 27017°C contains a mixture of...Ch. 15 - At 70 K, CCl4 decomposes to carbon and chlorine....Ch. 15 - The equilibrium constant for the reaction...Ch. 15 - A sample of CaCO3(s) is introduced into a sealed...Ch. 15 - An equilibrium mixture contains N2O4, (P = O.28)...Ch. 15 - Carbon monoxide and chlorine gas react to form...Ch. 15 - Prob. 92ECh. 15 - Prob. 93ECh. 15 - Prob. 94ECh. 15 - Nitrogen monoxide reacts with chlorine gas...Ch. 15 - At a given temperature, a system containing O2(g)...Ch. 15 - A sample of pure NO2 is heated to 337 °C, at which...Ch. 15 - When N2O5(g) is heated, it dissociates into...Ch. 15 - A sample of SO3 is introduced into an evacuated...Ch. 15 - A reaction A(g)B(g) has an equilibrium constant of...Ch. 15 - The reaction A(g)2B(g) has an equilibrium constant...Ch. 15 - A particular reaction has an equilibrium constant...Ch. 15 - Consider the reaction: aA(g)bB(g) Each of the...Ch. 15 - Consider the simple one-step reaction: A(g)B(g)...Ch. 15 - Prob. 105ECh. 15 - Consider the reaction: N2(g)+3H2(g)2NH3(g). a....Ch. 15 - For the reaction AB , the ratio of products to...Ch. 15 - Solve each of the expressions for x using the...Ch. 15 - Have each group member explain to the group what...Ch. 15 - Prob. 110ECh. 15 - What is the correct expression for the equilibrium...Ch. 15 - Prob. 2SAQCh. 15 - Use the data below to find the equilibrium...Ch. 15 - The reaction shown here has a Kp = 4.5X102 AT 825...Ch. 15 - Consider the reaction between NO and Cl2 to form...Ch. 15 - Prob. 6SAQCh. 15 - Consider the reaction between iodine gas and...Ch. 15 - Prob. 8SAQCh. 15 - The decomposition of NH4HS is endothermic:...Ch. 15 - The solid XY decomposes into gaseous X and Y:...Ch. 15 - What is the effect of adding helium gas (at...Ch. 15 - Prob. 12SAQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The decomposition of NH4HS, NH 4 HS( s )NH3( g )+ H 2 S( g ) is an endothermic process. Using Le Chatelier's principle, explain how increasing the temperature would affect the equilibrium. If more NH4HS is added to a flask in which this equilibrium exists, how is the equilibrium affected? What if some additional NH3 is placed in the flask? What will happen to the pressure of NH3 if some H2S is removed from the flask?arrow_forwardAt room temperature, the equilibrium constant Kc for the reaction 2 NO(g) ⇌ N2(g) + O2(g) is 1.4 × 1030. Is this reaction product-favored or reactant-favored? Explain your answer. In the atmosphere at room temperature the concentration of N2 is 0.33 mol/L, and the concentration of O2 is about 25% of that value. Calculate the equilibrium concentration of NO in the atmosphere produced by the reaction of N2 and O2. How does this affect your answer to Question 11?arrow_forwardAn equilibrium involving the carbonate and bicarbonate ions exists in natural waters: HCO5_(aq) «=* H+(aq) + COf-(aq) Assuming that the reactions in both directions are elementary' processes: Write rate expressions for the forward and reverse reactions. Write an expression for the equilibrium constant based on the rates of the forward and reverse reactions.arrow_forward
- Methanol, a common laboratory solvent, poses a threat of blindness or death if consumed in sufficient amounts. Once in the body, the substance is oxidized to produce formaldehyde (embalming fluid) and eventually formic acid. Both of these substances are also toxic in varying levels. The equilibrium between methanol and formaldehyde can be described as follows: CH3OH(aq)H2CO(aq)+H2(aq) Assuming the value of K for this reaction is 3.7 1010, what are the equilibrium concentrations of each species if you start with a 1.24 M solution of methanol? What will happen to the concentration of methanol as the formaldehyde is further converted to formic acid?arrow_forward. Many sugars undergo a process called mutarotation, in which the sugar molecules interconvert between two isomeric forms, finally reaching an equilibrium between them. This is true for the simple sugar glucose, C6H12O6, which exists in solution in isomeric forms called alpha-glucose and beta-glucose. If a solution of glucose at a certain temperature is analyzed, and it is found that the concentration of alpha-glucose is twice the concentration of beta-glucose, what is the value of K for the inter-conversion reaction?arrow_forwardIn Section 13.1 of your text, it is mentioned that equilibrium is reached in a closed system. What is meant by the term closed system. and why is it necessary to have a closed system in order for a system to reach equilibrium? Explain why equilibrium is not reached in an open system.arrow_forward
- During an experiment with the Haber process, a researcher put 1 mol N2 and 1 mol H2 into a reaction vessel to observe the equilibrium formation of ammonia, NH3. N2(g)+3H2(g)2NH3(g) When these reactants come to equilibrium, assume that x mol H2 react. How many moles of ammonia form?arrow_forwardLexan is a plastic used to make compact discs, eyeglass lenses, and bullet-proof glass. One of the compounds used to make Lexan is phosgene (COCl2), an extremely poisonous gas. Phosgene decomposes by the reaction COCl2(g)CO(g)+Cl2(g) for which Kp 6.8 109 at 100C. If pure phosgene at an initial pressure of 1.0 atm decomposes, calculate the equilibrium pressures of all species.arrow_forwardBecause carbonic acid undergoes a second ionization, the student in Exercise 12.39 is concerned that the hydrogen ion concentration she calculated is not correct. She looks up the equilibrium constant for the reaction HCO,-(aq) «=* H+(aq) + COf'(aq) Upon finding that the equilibrium constant for this reaction is 4.8 X 10“H, she decides that her answer in Exercise 12.39 is correct. Explain her reasoning. A student is simulating the carbonic acid—hydrogen carbonate equilibrium in a lake: H,CO,(aq) 5=6 H+(aq) + HCO,'(aq) K = 4.4 X 10'7She starts with 0.1000 A1 carbonic acid. W hat are the concentrations of all species at equilibrium?arrow_forward
- . For the reaction 3O2(g)2O3(g)The equilibrium constant, K, has the value 1.121054at a particular temperature. a. What does the very small equilibrium constant indicate about the extent to which oxygen gas, O2(g), is converted to ozone gas, O3(g), at this temperature? b. If the equilibrium mixture is analyzed and [O2(g)]is found to be 3.04102M, what is the concentration of O3(g) in the mixture’?arrow_forwardConsider 0.200 mol phosphorus pentachloride sealed in a 2.0-L container at 620 K. The equilibrium constant, Kc, is 0.60 for PCl5(g) PCl3(g) + Cl2(g) Calculate the concentrations of all species after equilibrium has been reached.arrow_forwardA mixture of 0.0565 mol phosphorus pentachloride, PCl5, and 0.0800 mol helium gas, He, was placed in a 1.000-L flask and heated to 250.0C. The phosphorus pentachloride decomposes at this temperature to give phosphorus trichloride, PCl3, and chlorine gas, Cl2. The helium gas is inert. PCl5(g)PCl3(g)+Cl2(g) What is the partial pressure of helium in this equilibrium mixture at 250.0C? At equilibrium, the total pressure is found to be 6.505 atm. What is Kc for the dissociation of PCl5?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemical Principles in the LaboratoryChemistryISBN:9781305264434Author:Emil Slowinski, Wayne C. Wolsey, Robert RossiPublisher:Brooks Cole
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemical Principles in the Laboratory
Chemistry
ISBN:9781305264434
Author:Emil Slowinski, Wayne C. Wolsey, Robert Rossi
Publisher:Brooks Cole
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY