CENGAGENOW FOR ANDERSON/SWEENEY/WILLIAM
13th Edition
ISBN: 9781337094399
Author: Cochran
Publisher: IACCENGAGE
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.8, Problem 48E
Refer to exercise 7, where an estimated regression equation relating years of experience and annual sales was developed.
- a. Compute the residuals and construct a residual plot for this problem.
- b. Do the assumptions about the error terms seem reasonable in light of the residual plot?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A Realtor examines the factors that influence the price of a house in Arlington, Massachusetts. He collects data on recent house sales (Price) and notes each house’s square footage (Sqft) as well as its number of bedrooms (Beds) and number of bathrooms (Baths).
Which of the following assumptions is NOT made when estimating regression models?
a. There is a linear relationship between the explanatory and response variables
b. All of the relevant explanatory variables have been included in the model
c. All of the explanatory variables are independent
d. All of the explanatory variables are positively correlated with the response variable.
1. Develop a simple linear regression equation for starting salaries using an independent
variable that has the closest relationship with the salaries. Explain how you chose this
variable.
a) Give a practical interpretation of the y-intercept of the regression line. b) What is the best-predicted value for the median hourly wage gain for the fifteenth year of schooling? c) The actual wage gain for the fifteenth year of schooling was 14%. How close was the predicted wage gain present to the actual value, i.e. what is the residual?
Chapter 14 Solutions
CENGAGENOW FOR ANDERSON/SWEENEY/WILLIAM
Ch. 14.2 - Given are five observations for two variables, x...Ch. 14.2 - Given are five observations for two variables, x...Ch. 14.2 - Given are five observations collected in a...Ch. 14.2 - The following data give the percentage of women...Ch. 14.2 - Brawdy Plastics, Inc., produces plastic seat belt...Ch. 14.2 - The National Football League (NFL) records a...Ch. 14.2 - A sales manager collected the following data on...Ch. 14.2 - The American Association of Individual Investors...Ch. 14.2 - Prob. 9ECh. 14.2 - On March 31, 2009, Ford Motor Companys shares were...
Ch. 14.2 - To help consumers in purchasing a laptop computer,...Ch. 14.2 - Concur Technologies, Inc., is a large...Ch. 14.2 - To the Internal Revenue Service, the...Ch. 14.2 - A large city hospital conducted a study to...Ch. 14.3 - The data from exercise 1 follow. xi 1 2 3 4 5 yi 3...Ch. 14.3 - The data from exercise 2 follow. xi 3 12 6 20 14...Ch. 14.3 - The data from exercise 3 follow. xi 2 6 9 13 20 yi...Ch. 14.3 - The following data show the brand, price (), and...Ch. 14.3 - In exercise 7 a sales manager collected the...Ch. 14.3 - Bicycling, the worlds leading cycling magazine,...Ch. 14.3 - An important application of regression analysis in...Ch. 14.3 - Refer to exercise 9, where the following data were...Ch. 14.5 - The data from exercise 1 follow. xi 1 2 3 4 5 yi 3...Ch. 14.5 - The data from exercise 2 follow. xi 3 12 6 20 14...Ch. 14.5 - The data from exercise 3 follow. xi 2 6 9 13 20 yi...Ch. 14.5 - In exercise 18 the data on price () and the...Ch. 14.5 - To identify high-paying jobs for people who do not...Ch. 14.5 - In exercise 8 ratings data on x = the quality of...Ch. 14.5 - Refer to exercise 21, where data on production...Ch. 14.5 - Refer to exercise 9, where the following data were...Ch. 14.5 - In exercise 20, data on x = weight (pounds) and y...Ch. 14.6 - The data from exercise 1 follow. xi 1 2 3 4 5 yi 3...Ch. 14.6 - The data from exercise 2 follow. xi 3 12 6 20 14...Ch. 14.6 - The data from exercise 3 follow. xi 2 6 9 13 20 yi...Ch. 14.6 - The following data are the monthly salaries y and...Ch. 14.6 - In exercise 7, the data on y = annual sales (...Ch. 14.6 - In exercise 13, data were given on the adjusted...Ch. 14.6 - Refer to exercise 21, where data on the production...Ch. 14.6 - In exercise 12, the following data on x = average...Ch. 14.7 - The commercial division of a real estate firm is...Ch. 14.7 - Following is a portion of the computer output for...Ch. 14.7 - A regression model relating x, number of...Ch. 14.7 - A 2012 suvey conducted by Idea Works provided data...Ch. 14.7 - Automobile racing, high-performance driving...Ch. 14.8 - Given are data for two variables, x and y. xi 6 11...Ch. 14.8 - The following data were used in a regression...Ch. 14.8 - Data on advertising expenditures and revenue (in...Ch. 14.8 - Refer to exercise 7, where an estimated regression...Ch. 14.8 - In 2011 home prices and mortgage rates dropped so...Ch. 14.9 - Consider the following data for two variables, x...Ch. 14.9 - Consider the following data for two variables, x...Ch. 14.9 - Charity Navigator is Americas leading independent...Ch. 14.9 - Many countries, especially those in Europe, have...Ch. 14.9 - Prob. 54ECh. 14 - Does a high value of r2 imply that two variables...Ch. 14 - In your own words, explain the difference between...Ch. 14 - What is the purpose of testing whether 1 = 0? If...Ch. 14 - The Dow Jones Industrial Average (DJIA) and the...Ch. 14 - Is the number of square feet of living space a...Ch. 14 - One of the biggest changes in higher education in...Ch. 14 - Jensen Tire Auto is in the process of deciding...Ch. 14 - In a manufacturing process the assembly line speed...Ch. 14 - A sociologist was hired by a large city hospital...Ch. 14 - The regional transit authority for a major...Ch. 14 - A marketing professor at Givens College is...Ch. 14 - The Transactional Records Access Clearinghouse at...Ch. 14 - The Toyota Camry is one of the best-selling cars...Ch. 14 - You have been assigned to analyze the risk...Ch. 14 - As part of a study on transportation safety, the...Ch. 14 - Consumer Reports tested 166 different...Ch. 14 - Finding the Best Car Value When trying to decide...Ch. 14 - Buckeye Creek Amusement Park is open from the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Olympic Pole Vault The graph in Figure 7 indicates that in recent years the winning Olympic men’s pole vault height has fallen below the value predicted by the regression line in Example 2. This might have occurred because when the pole vault was a new event there was much room for improvement in vaulters’ performances, whereas now even the best training can produce only incremental advances. Let’s see whether concentrating on more recent results gives a better predictor of future records. (a) Use the data in Table 2 (page 176) to complete the table of winning pole vault heights shown in the margin. (Note that we are using x=0 to correspond to the year 1972, where this restricted data set begins.) (b) Find the regression line for the data in part ‚(a). (c) Plot the data and the regression line on the same axes. Does the regression line seem to provide a good model for the data? (d) What does the regression line predict as the winning pole vault height for the 2012 Olympics? Compare this predicted value to the actual 2012 winning height of 5.97 m, as described on page 177. Has this new regression line provided a better prediction than the line in Example 2?arrow_forwardWhat does the y -intercept on the graph of a logistic equation correspond to for a population modeled by that equation?arrow_forwardDoes Table 1 represent a linear function? If so, finda linear equation that models the data.arrow_forward
- Table 2 shows a recent graduate’s credit card balance each month after graduation. a. Use exponential regression to fit a model to these data. b. If spending continues at this rate, what will the graduate’s credit card debt be one year after graduating?arrow_forwardTable 6 shows the population, in thousands, of harbor seals in the Wadden Sea over the years 1997 to 2012. a. Let x represent time in years starting with x=0 for the year 1997. Let y represent the number of seals in thousands. Use logistic regression to fit a model to these data. b. Use the model to predict the seal population for the year 2020. c. To the nearest whole number, what is the limiting value of this model?arrow_forwardb. What does the scatter diagram developed in part (a) indicate about the relationship between the two variables? The scatter diagram indicates a positive ✔✔✔ linear relationship between the hotel room rate and the amount spent on entertainment. c. Develop the least squares estimated regression equation. Entertainment = 18.2594 X + 1.0272 Room Rate (to 4 decimals) d. Provide an interpretation for the slope of the estimated regression equation (to 3 decimals). The slope of the estimated regression line is approximately 1.027 So, for every dollar increase ♥ e. The average room rate in Chicago is $128, considerably higher than the U.S. average. Predict the entertainment expense per day for Chicago (to whole number). $ 150 in the hotel room rate the amount spent on entertainment increases by $1.027arrow_forward
- The manager of the purchasing department of a large saving and loan organization would like to develop a model to predict the amount of time (measured in hours) it takes to record a loan application. Data are collected from a sample of 30 days, and the number of applications recorded and completion time in hours is recorded. Attached below is the regression output. What is the value of the measured t-test statistic to test whether the amount of time depends linearly on the number of loan applications recorded? Question content area bottom Part 1 A. 15.2388 B. 3.2559 C. 232.2200 D. 0.8924arrow_forwardThe U.S. Postal Service is attempting to reduce the number of complaints made by the public against its workers. To facilitate this task, a staff analyst for the service regresses the number of complaints lodged against an employee last year on the hourly wage of the employee for the year. The analyst ran a simple linear regression in SPSS. The results are shown below. What proportion of variation in the number of complaints can be explained by hourly wages? From the results shown above, write the regression equation If wages were increased by $1.00, what is the expected effect on the number of complaints received per employee?arrow_forwarda.You make the bold assumption that there is a linear relationship between number of ads and sales revenues. Find the intercept, b0, and the slope, b1, of the estimated regression equation that will minimize the sum of square residuals. b.A new advertising campaigns includes 5 ads. Based on what you calculated in part 1.a, how much sales do you expect? Respond just based on the point estimate.arrow_forward
- Armer Company is accumulating data to use in preparing its annual profit plan for the coming year. The cost behavior pattern of the maintenance costs must be determined. The accounting staff has suggested the use of linear regression to derive an equation for maintenance hours and costs. Data regarding the maintenance hours and costs for the last year and the results of the regression analysis follow: Month Maintenance Cost Machine Hours Jan. $ 5,050 820 Feb. 3,850 660 Mar. 4,450 740 Apr. 3,670 640 May 5,200 840 June 3,810 650 July 3,880 660 Aug. 5,320 940 Sept. 5,110 830 Oct. 4,900 810 Nov. 4,150 690 Dec. 4,010 680 Sum $ 53,400 8,960 Average $ 4,450 $ 747 Average cost per hour $ 6.00 a (intercept) $ 194.33 b (coefficient) 6.2201 Standard error of the estimate 144.247 R-squared 0.9517 t-value for b 14.030…arrow_forwardThe follow table gives the approximate economic value associated with various levels of oil recovery in Texas. Find the regression line, and use it to estimate the economic value associated with a recovery level of 70%.arrow_forwardThe county assessor is studying housing demand and is interested in developing a regression model to estimate the market value (i.e., selling price) of residential property within her jurisdiction. The assessor suspects that the most important variable affecting selling price (measured in thousands of dollars) is the size of house (measured in hundreds of square feet). She randomly selects 15 houses and measures both the selling price and size, as shown in the following table. Complete the table and then use it to determine the estimated regression line. Observation i 1 2 3 4 5 6 7 8 9 10 i 11 12 13 14 15 Total O 8.074 Regression Parameters Slope (B) Intercept (α) 10.181 8.358 O 0.327 Size (x 100 sq. ft.) O 0.316 12 20.2 27 O 0.398 30 30 O Yes 21.4 21.6 25.2 37.2 14.4 15 22.4 23.9 26.6 30.7 357.60 O No What is the standard error of the estimate (Se)? In words, for each hundred square feet, the expected selling price of a house Selling Price (x $1,000) Ii Yi y 265.2 253.4 12 2 20.2…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY