Stokes’ Theorem for evaluating surface
20. F = 〈x + y, y + z, z + x〉; S is the titled disk enclosed by r(t) = 〈cos t, 2 sin t,
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Calculus: Early Transcendentals, 2nd Edition
Additional Math Textbook Solutions
University Calculus: Early Transcendentals (4th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Basic Business Statistics, Student Value Edition
Elementary Statistics (13th Edition)
Algebra and Trigonometry (6th Edition)
Elementary Statistics: Picturing the World (7th Edition)
- Find the surface area of the "Coolio McSchoolio" surface shown below using the formula: SA = integral, integral D, ||ru * rv||dA %3D The parameterization of the surface is: r(u,v) = vector brackets (uv, u + v, u - v) where u^2 + v^2 <= 1 A.) (pi/3)(6squareroot(6) - 8) B.) (pi/3)(6squareroot(6) - 2squareroot(2)) C.) (pi/6)(2squareroot(3) - squareroot(2)) D.) (pi/6)(squareroot(6) - squareroot(2)) E.) (5pi/6)(6 - squareroot(2))arrow_forwardHelp with the following questionarrow_forwardUse Stokes' Theorem to evaluate Use Stokes' Theorem to evaluate ∫C F · dr where C is oriented counterclockwise as viewed from above. F(x, y, z) = yzi + 3xzj + exyk, C is the circle x2 + y2 = 4, z = 6.arrow_forward
- Stokes’ Theorem for evaluating surface integrals Evaluate the line integral in Stokes’ Theorem to determine the value of the surface integral ∫∫S (∇ x F) ⋅ n dS. Assume n points in an upward direction.arrow_forwardRadial fields and zero circulation Consider the radial vectorfields F = r/ | r | p, where p is a real number and r = ⟨x, y, z⟩ .Let C be any circle in the xy-plane centered at the origin.a. Evaluate a line integral to show that the field has zero circulation on C.b. For what values of p does Stokes’ Theorem apply? For those values of p, use the surface integral in Stokes’ Theorem to show that the field has zero circulation on C.arrow_forwardStokes theoremarrow_forward
- (b) Evaluate the line integral Jo dzalong the simple closed contour C shown in the diagram. -2 -1 2j o 1 2arrow_forwardStokes’ Theorem for evaluating line integrals Evaluate theline integral ∮C F ⋅ dr by evaluating the surface integral in Stokes’Theorem with an appropriate choice of S. Assume C has a counterclockwiseorientation. F = ⟨2y, -z, x⟩; C is the circle x2 + y2 = 12 in the plane z = 0.arrow_forwardScalar line integrals Evaluate the following line integral along the curve C.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning