Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
a. The rotational field F = 〈–y, x〉 has zero curl and zero divergence.
b. ▿ × ▿ϕ = 0
c. Two
d. Two vector fields with the same divergence differ by a constant vector field.
e. If F = 〈x, y, z) and S encloses a region D, then
a.
To explain: Whether the given statement is true or not.
Answer to Problem 1RE
The statement is false.
Explanation of Solution
Given statement:
The rotational field
Calculation:
The given rotational field
Assume
The curl is
Substitute
Thus, the curl is 2.
Hence, the statement is false.
b.
To explain: Whether the given statement is true or not.
Answer to Problem 1RE
The statement is true.
Explanation of Solution
Given statement:
The following
Calculation:
The given statement is
Here,
Hence,
It is known that the curl of a conservative field is zero.
Hence,
Therefore, the statement is true.
c.
To explain: Whether the given statement is true or not.
Answer to Problem 1RE
The statement is false.
Explanation of Solution
Given statement:
Two vector fields with the same curl differ by a constant vector field.
Calculation:
Consider the rotational field
Assume
The curl is
Substitute the values
Thus, the curl is 2.
Consider the vector field
Assume
The curl is
Substitute the values
Thus, the curl is 2.
Hence, the vector fields
Thus, the statement is false.
d.
To explain: Whether the given statement is true or not.
Answer to Problem 1RE
The statement is false.
Explanation of Solution
Given statement:
Two vector fields with the same divergence differ by a constant vector field.
Calculation:
Consider the rotational field
Obtain the divergence.
Thus, the divergence is 1.
Consider the rotational field
Obtain the divergence.
Thus, the divergence is 1.
Hence, the vector fields
Thus, the statement is false.
e.
To explain: Whether the given statement is true or not.
Answer to Problem 1RE
The statement is true.
Explanation of Solution
Given statement:
If
Theorem Used:
Divergence theorem:
Let F be a vector field whose components have continuous first partial derivatives in a connected and simply connected region D in
Calculation:
Consider the rotational field
Compute the divergence of F.
Use the Divergence theorem stated above that obtains the value of
Thus, the statement is true.
Want to see more full solutions like this?
Chapter 14 Solutions
Calculus: Early Transcendentals, 2nd Edition
Additional Math Textbook Solutions
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Elementary Statistics (13th Edition)
Calculus: Early Transcendentals (2nd Edition)
Elementary Statistics
University Calculus: Early Transcendentals (4th Edition)
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
- i+2j+3k = (1,2,3) and b = -i-k. Calculate the cross product a x b where a Next calculate the area of the parallelogram spanned by a and b.arrow_forwardThe measured receptance data around two resonant picks of a structure are tabulated in the followings. Find the natural frequencies, damping ratios, and mode shapes of the structure. (30 points) (@)×10 m/N α₁₂ (@)×10 m/N w/2z (Hz) 99 0.1176 0.17531 0.1114 -0.1751i 101 -0.0302 0.2456i -0.0365 -0.2453i 103 -0.1216 0.1327i -0.1279-0.1324i 220 0.0353 0.0260i -0.0419+0.0259i 224 0.0210 0.0757i |-0.0273 +0.0756i 228 -0.0443 0.0474i 0.0382 +0.0474iarrow_forward== 1. A separable differential equation can be written in the form hy) = g(a) where h(y) is a function of y only, and g(x) is a function of r only. All of the equations below are separable. Rewrite each of these in the form h(y) = g(x), then find a general solution by integrating both sides. Determine whether the solutions you found are explicit (functions) or implicit (curves but not functions) (a) 1' = — 1/3 (b) y' = = --- Y (c) y = x(1+ y²)arrow_forward
- A circle of radius r centered at the point (0,r) in the plane will intersect the y-axis at the origin and the point A=(0,2r), as pictured below. A line passes through the point A and the point C=(11/2,0) on the x-axis. In this problem, we will investigate the coordinates of the intersection point B between the circle and the line, as 1 → ∞ A=(0,2r) B (0,0) (a) The line through A and C has equation: y= 2 117 x+27 (b) The x-coordinate of the point B is 4472 121,2 +4 40 (c) The y-coordinate of the point B is +27 121 44 (d) The limit as r→ ∞ of the x-coordinate of B is 121 (if your answer is oo, write infinity).arrow_forward1. Show that the vector field F(x, y, z) = (2x sin ye³)ix² cos yj + (3xe³ +5)k satisfies the necessary conditions for a conservative vector field, and find a potential function for F.arrow_forwardi need help pleasearrow_forward
- 6. (i) Sketch the trace of the following curve on R², (t) = (sin(t), 3 sin(t)), tЄ [0, π]. [3 Marks] Total marks 10 (ii) Find the length of this curve. [7 Marks]arrow_forwardhelppparrow_forward7. Let F(x1, x2) (F₁(x1, x2), F2(x1, x2)), where = X2 F1(x1, x2) X1 F2(x1, x2) x+x (i) Using the definition, calculate the integral LF.dy, where (t) = (cos(t), sin(t)) and t = [0,2]. [5 Marks] (ii) Explain why Green's Theorem cannot be used to find the integral in part (i). [5 Marks]arrow_forward
- 6. Sketch the trace of the following curve on R², п 3п (t) = (t2 sin(t), t2 cos(t)), tЄ 22 [3 Marks] Find the length of this curve. [7 Marks]arrow_forwardTotal marks 10 Total marks on naner: 80 7. Let DCR2 be a bounded domain with the boundary OD which can be represented as a smooth closed curve : [a, b] R2, oriented in the anticlock- wise direction. Use Green's Theorem to justify that the area of the domain D can be computed by the formula 1 Area(D) = ½ (−y, x) · dy. [5 Marks] (ii) Use the area formula in (i) to find the area of the domain D enclosed by the ellipse y(t) = (10 cos(t), 5 sin(t)), t = [0,2π]. [5 Marks]arrow_forwardTotal marks 15 Total marks on paper: 80 6. Let DCR2 be a bounded domain with the boundary ǝD which can be represented as a smooth closed curve : [a, b] → R², oriented in the anticlockwise direction. (i) Use Green's Theorem to justify that the area of the domain D can be computed by the formula 1 Area(D) = . [5 Marks] (ii) Use the area formula in (i) to find the area of the domain D enclosed by the ellipse (t) = (5 cos(t), 10 sin(t)), t = [0,2π]. [5 Marks] (iii) Explain in your own words why Green's Theorem can not be applied to the vector field У x F(x,y) = ( - x² + y²²x² + y² ). [5 Marks]arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning