THERMODYNAMICS: ENG APPROACH LOOSELEAF
9th Edition
ISBN: 9781266084584
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 14.7, Problem 104P
To determine
The third stream’s temperature and relative humidity.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Outdoor air at 35°C dry-bulb and 19°C dewpoint temperatures are to be mixed with room air at 26°C dry-bulb temperature and specific humidity of 0.0105 kgv/kga. The mass of outdoor air is one-third of the mass of the mixture. Find the following properties of the mixed air:
Dry-bulb temperature
Specific humidity
Enthalpy
Relative humidity
Dewpoint temperature
Specific volume
Outdoor air at 35°C dry-bulb and 19°C dewpoint temperatures are to be mixed with room air at 26°C dry-bulb temperature and specific humidity of 0.0105 kgv/kga. The mass of outdoor air is one-third of the mass of the mixture. Find the following properties of the mixed air:
Dry-bulb temperature
Specific humidity
Enthalpy
Relative humidity
Dewpoint temperature
Specific volume
Saturated air at 13 °C and 1 atm enters the heating section of an air-conditioning system at a rate of 0.5 kg/s and leaves 30 °C. Determine the rate of heat transfer to the air and the exit relative humidity.
Chapter 14 Solutions
THERMODYNAMICS: ENG APPROACH LOOSELEAF
Ch. 14.7 - What is the difference between dry air and...Ch. 14.7 - What is vapor pressure?Ch. 14.7 - What is the difference between the specific...Ch. 14.7 - Can the water vapor in air be treated as an ideal...Ch. 14.7 - Explain how vapor pressure of the ambient air is...Ch. 14.7 - Is the relative humidity of saturated air...Ch. 14.7 - Moist air is passed through a cooling section...Ch. 14.7 - How will (a) the specific humidity and (b) the...Ch. 14.7 - Prob. 9PCh. 14.7 - Consider a tank that contains moist air at 3 atm...
Ch. 14.7 - Is it possible to obtain saturated air from...Ch. 14.7 - Why are the chilled water lines always wrapped...Ch. 14.7 - How would you compare the enthalpy of water vapor...Ch. 14.7 - A tank contains 15 kg of dry air and 0.17 kg of...Ch. 14.7 - Prob. 15PCh. 14.7 - An 8-m3 tank contains saturated air at 30C, 105...Ch. 14.7 - Determine the masses of dry air and the water...Ch. 14.7 - A room contains air at 85F and 13.5 psia at a...Ch. 14.7 - Prob. 19PCh. 14.7 - Prob. 20PCh. 14.7 - Prob. 21PCh. 14.7 - In summer, the outer surface of a glass filled...Ch. 14.7 - In some climates, cleaning the ice off the...Ch. 14.7 - Andy and Wendy both wear glasses. On a cold winter...Ch. 14.7 - Prob. 25PCh. 14.7 - Prob. 26PCh. 14.7 - Prob. 27PCh. 14.7 - A thirsty woman opens the refrigerator and picks...Ch. 14.7 - The air in a room has a dry-bulb temperature of...Ch. 14.7 - Prob. 31PCh. 14.7 - Prob. 32PCh. 14.7 - Prob. 33PCh. 14.7 - How do constant-enthalpy and...Ch. 14.7 - At what states on the psychrometric chart are the...Ch. 14.7 - How is the dew-point temperature at a specified...Ch. 14.7 - Can the enthalpy values determined from a...Ch. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Prob. 39PCh. 14.7 - Prob. 40PCh. 14.7 - Prob. 41PCh. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Reconsider Prob. 1443. Determine the adiabatic...Ch. 14.7 - What does a modern air-conditioning system do...Ch. 14.7 - How does the human body respond to (a) hot...Ch. 14.7 - How does the air motion in the vicinity of the...Ch. 14.7 - Consider a tennis match in cold weather where both...Ch. 14.7 - Prob. 49PCh. 14.7 - Prob. 50PCh. 14.7 - Prob. 51PCh. 14.7 - Prob. 52PCh. 14.7 - What is metabolism? What is the range of metabolic...Ch. 14.7 - Why is the metabolic rate of women, in general,...Ch. 14.7 - What is sensible heat? How is the sensible heat...Ch. 14.7 - Prob. 56PCh. 14.7 - Prob. 57PCh. 14.7 - Prob. 58PCh. 14.7 - Prob. 59PCh. 14.7 - Repeat Prob. 1459 for an infiltration rate of 1.8...Ch. 14.7 - An average (1.82 kg or 4.0 lbm) chicken has a...Ch. 14.7 - An average person produces 0.25 kg of moisture...Ch. 14.7 - How do relative and specific humidities change...Ch. 14.7 - Prob. 64PCh. 14.7 - Humid air at 150 kPa, 40C, and 70 percent relative...Ch. 14.7 - Humid air at 40 psia, 50F, and 90 percent relative...Ch. 14.7 - Prob. 67PCh. 14.7 - Air enters a 30-cm-diameter cooling section at 1...Ch. 14.7 - Prob. 69PCh. 14.7 - Prob. 70PCh. 14.7 - Why is heated air sometimes humidified?Ch. 14.7 - Air at 1 atm, 15C, and 60 percent relative...Ch. 14.7 - Air at 14.7 psia, 35F, and 50 percent relative...Ch. 14.7 - An air-conditioning system operates at a total...Ch. 14.7 - Prob. 75PCh. 14.7 - Why is cooled air sometimes reheated in summer...Ch. 14.7 - Atmospheric air at 1 atm, 30C, and 80 percent...Ch. 14.7 - Ten thousand cubic feet per hour of atmospheric...Ch. 14.7 - Air enters a 40-cm-diameter cooling section at 1...Ch. 14.7 - Repeat Prob. 1479 for a total pressure of 88 kPa...Ch. 14.7 - On a summer day in New Orleans, Louisiana, the...Ch. 14.7 - Prob. 83PCh. 14.7 - Prob. 84PCh. 14.7 - Prob. 85PCh. 14.7 - Saturated humid air at 70 psia and 200F is cooled...Ch. 14.7 - Humid air is to be conditioned in a...Ch. 14.7 - Atmospheric air at 1 atm, 32C, and 95 percent...Ch. 14.7 - Prob. 89PCh. 14.7 - Prob. 90PCh. 14.7 - Does an evaporation process have to involve heat...Ch. 14.7 - Prob. 92PCh. 14.7 - Prob. 93PCh. 14.7 - Air enters an evaporative (or swamp) cooler at...Ch. 14.7 - Prob. 95PCh. 14.7 - Air at 1 atm, 20C, and 70 percent relative...Ch. 14.7 - Two unsaturated airstreams are mixed...Ch. 14.7 - Consider the adiabatic mixing of two airstreams....Ch. 14.7 - Two airstreams are mixed steadily and...Ch. 14.7 - A stream of warm air with a dry-bulb temperature...Ch. 14.7 - Prob. 104PCh. 14.7 - Prob. 105PCh. 14.7 - How does a natural-draft wet cooling tower work?Ch. 14.7 - What is a spray pond? How does its performance...Ch. 14.7 - The cooling water from the condenser of a power...Ch. 14.7 - A wet cooling tower is to cool 60 kg/s of water...Ch. 14.7 - Prob. 110PCh. 14.7 - Prob. 111PCh. 14.7 - Water at 30C is to be cooled to 22C in a cooling...Ch. 14.7 - Prob. 113PCh. 14.7 - Prob. 114RPCh. 14.7 - Determine the mole fraction of dry air at the...Ch. 14.7 - Prob. 116RPCh. 14.7 - Prob. 117RPCh. 14.7 - Prob. 118RPCh. 14.7 - Prob. 119RPCh. 14.7 - Prob. 120RPCh. 14.7 - Prob. 121RPCh. 14.7 - Prob. 122RPCh. 14.7 - Prob. 124RPCh. 14.7 - Prob. 125RPCh. 14.7 - Prob. 126RPCh. 14.7 - Prob. 128RPCh. 14.7 - Prob. 129RPCh. 14.7 - Air enters a cooling section at 97 kPa, 35C, and...Ch. 14.7 - Prob. 131RPCh. 14.7 - Atmospheric air enters an air-conditioning system...Ch. 14.7 - Humid air at 101.3 kPa, 36C dry bulb and 65...Ch. 14.7 - An automobile air conditioner uses...Ch. 14.7 - Prob. 135RPCh. 14.7 - Prob. 137RPCh. 14.7 - Conditioned air at 13C and 90 percent relative...Ch. 14.7 - Prob. 141FEPCh. 14.7 - A 40-m3 room contains air at 30C and a total...Ch. 14.7 - A room is filled with saturated moist air at 25C...Ch. 14.7 - Prob. 144FEPCh. 14.7 - The air in a house is at 25C and 65 percent...Ch. 14.7 - Prob. 146FEPCh. 14.7 - Air at a total pressure of 90 kPa, 15C, and 75...Ch. 14.7 - On the psychrometric chart, a cooling and...Ch. 14.7 - On the psychrometric chart, a heating and...Ch. 14.7 - An airstream at a specified temperature and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Saturated ambient air with a db-temperature of 5°C and a mass flow rate of 0.9 kg/s is divided into two streams. One stream passes through a heating section and leaves it with a relative humidity of 25%. The conditions of the other stream that bypasses the heater remains unchanged. The two streams are then mixed to produce the supply air stream at 24°C. The pressure is constant at 101.3 kPa. -Determine the partial pressure of water vapor of the heated air in kPa.-The heat input by the heating coil in kW.-The mass flow of air through the bypass section in kg/s.arrow_forwardA bedroom is to be conditioned that the total heat load is 20 kW and the sensible heat ratio is 0.4. The room is to be maintained at 22°C DB and 55% relative humidity. The outside air condition is at 32°C DB and 23°C WB. The conditioned air from the reheater enters the room at 17°C. Determine the following: a. The percentage of recirculated air if the mass flow rate of water vapor in the mixture is 1 kg/min b. The refrigeration load TR c. The heat required in the reheater kWarrow_forwardAn air-conditioning system operates at a total pressure of 1 atm and consists of a heating section and an evaporative cooler. Air enters the heating section at 15OC and 55 percent relative humidity at a rate of 30 m3 /min, and it leaves the evaporative cooler at 25OC and 45 percent relatively humidity. Determine the TOR.arrow_forward
- Outdoor air at 38°C dry-bulb and 19°C dewpoint temperatures are to be mixed with room air at 26°C dry-bulb temperature and specific humidity of 0.012 kgy/kga. The mass of outdoor air is one- third of the mass of the mixture. Find the following properties of the mixed air using the thermodynamic properties of air formulas: o Specific humidity o Enthalpy o Relative humidity o Dewpoint temperature o Specific volumearrow_forwardAn air-conditioning system operates at a total pressure of one atmosphere and consists of a heating section and an evaporative cooler. Air enters the heating section at 10 °C and 70 percent relative humidity at a rate of 30 m3/min, and it leaves the evaporative cooler at 20 °C and 60 percent relative humidity. Use this information to answer the following question. Choose the nearest value given in (a) – (e).The rate of water added to air in the evaporative cooler (kg/min) is (a) 0.12 (b) 0.67 (c) 13 (d) 37 (e) 67arrow_forwardWater needed to be cooled from 38°C to 33°C in a cooling tower with water flowrate of 110 kg/s. Ambient air is at 29°C, 90 KPa, and 50% Relative Humidity. Assuming that the air reaches thermodynamics equilibrium with incoming water, evaluate the heat dissipation.arrow_forward
- air flowing at 2 kg / s has a dry bulb temperature of 50 ° C and a wet bulb temperature of 30 ° C, mixed with air flowing at 3kg / s at 25 ° C and a relative humidity of 70%. Using the psycometry chart determine the ratio, enthalpy and temperature of the dry ballarrow_forwardMoist air at 32 degrees Cdb and relative humidity of 60% enter a refrigeration system with a flow rate of 90 kg/min. Saturated air at 15 degrees Cdb leaves the system. Calculate the heat and moisture removed in kW and kg/s respectively.arrow_forwardMoist air at 105 kPa, 30° C and 80% relative humidity flows over a cooling coil in an insulated air-conditioning duct. Saturated air exists the duct at 100kPa and 15°C. The saturation pressure of water at 30° C and 15°C are 4.24 kPa and 1.7 kPa, respectively. Molecular weight of water is 18 g/mol and that of air is 28.94 g/mol. The mass of water condensing out from the duct is ... g/kg of dry air (round off to 2 decimal places).arrow_forward
- The air conditions at the intake of an air compressor are 29 C, 50 percent relative humidity, and 101 kPa. The air is compressed to 400 kPa, then sent to an intercooler. If condensation of water vapor from the compressed air is to be prevented, what is the minimum temperature (tdp) to which the air can be cooled in the intercooler?Use theoretical calculation for this problem.arrow_forwardIn an industrial plant where tires are made, there is a wet cooling tower which fulfills a very important part of the process, it must cool 15 kg/s of watercooling temperature from 45 to 27°C, in a location where the atmospheric pressure is 95 kPa.Atmospheric air enters the tower at 22 °C and 60% relative humidity, and leaves 0.87 saturated at a temperature of 37 °C.Neglecting the power input to the fan, determine the following:1. The volumetric flow of air at the inlet of the cooling tower.2. The mass flow of make-up water required.arrow_forwardAir flowing at the rate of 80m3/min at 35°C dry bulb temperature and 50% relative humidity is mixed with another stream flowing at the rate of 20m3/min at 21°C dry bulb temperature and 50% relative humidity. The mixture flows over a cooling coil whose apparatus dew point temperature is 5°C and by-pass factor is 0.2. Find dry bulb temperature and relative humidity of air leaving the coil. If this air is supplied to an airconditioned room where dry bulb temperature of 21°C and relative humidity of 50% are maintained, and determine: a) Room sensible heat factor; and b) Cooling load capacity of the coil in tons of refrigeration.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY