Statistics for Business & Economics, Revised (MindTap Course List)
12th Edition
ISBN: 9781285846323
Author: David R. Anderson, Dennis J. Sweeney, Thomas A. Williams, Jeffrey D. Camm, James J. Cochran
Publisher: South-Western College Pub
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 14.6, Problem 37E
In exercise 13, data were given on the adjusted gross income x and the amount of itemized deductions taken by taxpayers. Data were reported in thousands of dollars. With the estimated regression equation ŷ = 4.68 + .16x, the point estimate of a reasonable level of total itemized deductions for a taxpayer with an adjusted gross income of $52,500 is $13,080.
- a. Develop a 95% confidence interval for the
mean amount of total itemized deductions for all taxpayers with an adjusted gross income of $52,500. - b. Develop a 95% prediction
interval estimate for the amount of total itemized deductions for a particular taxpayer with an adjusted gross income of $52,500. - c. If the particular taxpayer referred to in part (b) claimed total itemized deductions of $20,400, would the IRS agent’s request for an audit appear to be justified?
- d. Use your answer to part (b) to give the IRS agent a guideline as to the amount of total itemized deductions a taxpayer with an adjusted gross income of $52,500 should claim before an audit is recommended.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
find the (a) explained variation, (b) unexplained variation, and (c) indicated prediction interval. In each case, there is sujficient evidence to support a claim of a linear correlation, so it is reasonable to use the regression equation when making predictions.
Altitude and Temperature Listed below are altitudes (thousands of feet) and outside air temperatures (°F) recorded by the author during Delta Flight 1053 from New Orleans to Atlanta. For the prediction interval, use a 95% confidence level with the altitude of 6327 ft (or 6.327 thousand feet).
Thanks in advance!
A regression model to predict Y, the state burglary rate per 100,000 people, used the following four state predictors: X₁ = median age,
X₂ = number of bankruptcies per 1.000 population, X3 = federal expenditures per capita (a leading predictor), and X4 = high school
graduation percentage.
Click here for the Excel Data File
(a) Using the sample size of 50 people, calculate the calc and p-value in the table given below. (Negative values should be indicated
by a minus sign. Leave no cells blank - be certain to enter "0" wherever required. Round your answers to 4 decimal places.)
Predictor
Intercept
AgeMed
Bankrupt
FedSpend
HSGrad%
Answer is complete but not entirely correct.
*calc
5.2526
-2.1764✔✔
1.4101✔
Coefficient
4,198.5808
-27.3540
17.4893
-0.0124
-29.0314
SE
799.3395
12.5687
12.4033
0.0176
7.1268
-0.7045
-4.0736
p-value
0.0000
0.0348
0.2935
0.4848
0.0002
Chapter 14 Solutions
Statistics for Business & Economics, Revised (MindTap Course List)
Ch. 14.2 - Given are five observations for two variables, x...Ch. 14.2 - Given are five observations for two variables, x...Ch. 14.2 - Given are five observations collected in a...Ch. 14.2 - The following data give the percentage of women...Ch. 14.2 - Elliptical trainers are becoming one of the more...Ch. 14.2 - The National Football League (NFL) records a...Ch. 14.2 - A sales manager collected the following data on...Ch. 14.2 - The American Association of Individual Investors...Ch. 14.2 - Using a global-positioning-system (GPS)-based...Ch. 14.2 - On March 31, 2009, Ford Motor Companys shares were...
Ch. 14.2 - Sporty cars are designed to provide better...Ch. 14.2 - Concur Technologies, Inc., is a large...Ch. 14.2 - To the Internal Revenue Service, the...Ch. 14.2 - PCWorld rated four component characteristics for...Ch. 14.3 - The data from exercise 1 follow. xi 1 2 3 4 5 yi 3...Ch. 14.3 - The data from exercise 2 follow. xi 3 12 6 20 14...Ch. 14.3 - The data from exercise 3 follow. xi 2 6 9 13 20 yi...Ch. 14.3 - The following data show the brand, price (), and...Ch. 14.3 - In exercise 7 a sales manager collected the...Ch. 14.3 - Bicycling, the worlds leading cycling magazine,...Ch. 14.3 - An important application of regression analysis in...Ch. 14.3 - Refer to exercise 5 where the following data were...Ch. 14.5 - The data from exercise 1 follow. xi 1 2 3 4 5 yi 3...Ch. 14.5 - The data from exercise 2 follow. xi 3 12 6 20 14...Ch. 14.5 - The data from exercise 3 follow. xi 2 6 9 13 20 yi...Ch. 14.5 - In exercise 18 the data on price () and the...Ch. 14.5 - The number of megapixels in a digital camera is...Ch. 14.5 - In exercise 8 ratings data on x = the quality of...Ch. 14.5 - Refer to exercise 21, where data on production...Ch. 14.5 - Prob. 30ECh. 14.5 - In exercise 20, data on x = weight (pounds) and y...Ch. 14.6 - The data from exercise 1 follow. xi 1 2 3 4 5 yi 3...Ch. 14.6 - The data from exercise 2 follow. xi 3 12 6 20 14...Ch. 14.6 - The data from exercise 3 follow. xi 2 6 9 13 20 yi...Ch. 14.6 - The following data are the monthly salaries y and...Ch. 14.6 - In exercise 7, the data on y = annual sales (...Ch. 14.6 - In exercise 13, data were given on the adjusted...Ch. 14.6 - Refer to exercise 21, where data on the production...Ch. 14.6 - Almost all U.S. light-rail systems use electric...Ch. 14.7 - The commercial division of a real estate firm is...Ch. 14.7 - Following is a portion of the computer output for...Ch. 14.7 - A regression model relating x, number of...Ch. 14.7 - Out-of-state tuition and fees at the top graduate...Ch. 14.7 - Automobile racing, high-performance driving...Ch. 14.8 - Given are data for two variables, x and y. xi 6 11...Ch. 14.8 - The following data were used in a regression...Ch. 14.8 - Data on advertising expenditures and revenue (in...Ch. 14.8 - Refer to exercise 7, where an estimated regression...Ch. 14.8 - Recent family home sales in San Antonio provided...Ch. 14.9 - Consider the following data for two variables, x...Ch. 14.9 - Consider the following data for two variables, x...Ch. 14.9 - Charity Navigator is Americas leading independent...Ch. 14.9 - Many countries, especially those in Europe, have...Ch. 14.9 - Prob. 54ECh. 14 - Does a high value of r2 imply that two variables...Ch. 14 - In your own words, explain the difference between...Ch. 14 - What is the purpose of testing whether 1 = 0? If...Ch. 14 - The Dow Jones Industrial Average (DJIA) and the...Ch. 14 - The following data show Morningstars Fair Value...Ch. 14 - One of the biggest changes in higher education in...Ch. 14 - Jensen Tire Auto is in the process of deciding...Ch. 14 - In a manufacturing process the assembly line speed...Ch. 14 - A sociologist was hired by a large city hospital...Ch. 14 - The regional transit authority for a major...Ch. 14 - A marketing professor at Givens College is...Ch. 14 - The Transactional Records Access Clearinghouse at...Ch. 14 - The Toyota Camry is one of the best-selling cars...Ch. 14 - You have been assigned to analyze the risk...Ch. 14 - As part of a study on transportation safety, the...Ch. 14 - Consumer Reports tested 166 different...Ch. 14 - Finding the Best Car Value When trying to decide...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Find the equation of the regression line for the following data set. x 1 2 3 y 0 3 4arrow_forwardFind the mean hourly cost when the cell phone described above is used for 240 minutes.arrow_forwardFor the following exercises, use Table 4 which shows the percent of unemployed persons 25 years or older who are college graduates in a particular city, by year. Based on the set of data given in Table 5, calculate the regression line using a calculator or other technology tool, and determine the correlation coefficient. Round to three decimal places of accuracyarrow_forward
- What does the y -intercept on the graph of a logistic equation correspond to for a population modeled by that equation?arrow_forwardOlympic Pole Vault The graph in Figure 7 indicates that in recent years the winning Olympic men’s pole vault height has fallen below the value predicted by the regression line in Example 2. This might have occurred because when the pole vault was a new event there was much room for improvement in vaulters’ performances, whereas now even the best training can produce only incremental advances. Let’s see whether concentrating on more recent results gives a better predictor of future records. (a) Use the data in Table 2 (page 176) to complete the table of winning pole vault heights shown in the margin. (Note that we are using x=0 to correspond to the year 1972, where this restricted data set begins.) (b) Find the regression line for the data in part ‚(a). (c) Plot the data and the regression line on the same axes. Does the regression line seem to provide a good model for the data? (d) What does the regression line predict as the winning pole vault height for the 2012 Olympics? Compare this predicted value to the actual 2012 winning height of 5.97 m, as described on page 177. Has this new regression line provided a better prediction than the line in Example 2?arrow_forwardFor the following exercises, consider the data in Table 5, which shows the percent of unemployed in a city ofpeople25 years or older who are college graduates is given below, by year. 41. Based on the set of data given in Table 7, calculatethe regression line using a calculator or othertechnology tool, and determine the correlationcoefficient to three decimal places.arrow_forward
- Suppose the athletic director at a university would like to develop a regression model to predict the point differential for games played by the men's basketball team. A point differential is the difference between the final points scored by two competing teams. A positive differential is a win, and a negative differential is a loss. For a random sample of games, the point differential was calculated, along with the number of assists, rebounds, turnovers, and personal fouls. Use the data in the accompanying table attached below to complete parts a through e below. Assume a = 0.05. a) Using technology, construct a regression model using all three independent variables. y = __ + (_)x1 + (_)x2 + (_)x3 + (_)x4 b) Test the significance of each independent variable using a= 0.10. c) interpret the p-value for each independent variable. d) Construxt a 90% confidence interval for the regression coefficients for each independent variable and interpret the meaning. e) Using the results from…arrow_forwardThe local utility company surveys 12 randomly selected customers. For each survey participant, the company collects the following: annual electric bill (in dollars) and home size (in square feet). Output from a regression analysis appears below: Bill 13.45 +4.39*Size Coefficients Estimate Std. Error (Intercept) 13.45 Size 4.39 0.54 0.2 We are 90% confident that the mean annual electric bill increases by between 4.028✔ dollars and 4.753 x dollars for every additional square foot in home size. Round your answers to three decimal places and enter in increasing order.arrow_forwardBased on the sample data and the regression line, complete the following. The managers of an electric utility wish to examine the relationship between temperature and electricity use in the utility's service region during the summer months. In particular, the managers wish to be able to predict total electricity use for a day from the maximum temperature that day. The bivariate data below give the maximum temperature (in degrees Fahrenheit) and the electricity use (in thousands of kilowatt hours) of electricity generated and sold for a random sample of summer days. A best-fitting line for the data, obtained from least-squares regression, is given by =y+83.852.67x, in which x denotes the maximum temperature and y denotes the electricity use. This line is shown in the scatter plot below. (a)For these data, values for electricity use that are greater than the mean of the values for electricity use tend to be paired with temperature values that are ▼(Choose one) the mean of…arrow_forward
- If the coefficient of determination for a simple regression is 38.9534%, what is the correlation value between the dependent and independent variable? Assume that the variables have a positive relationship. Enter your answer as a decimal.arrow_forwardThe accompanying Credit Approval Decisions data provide information on credit history for a sample of banking customers. Use regression analysis to identify the best model for predicting the credit score as a function of the other numerical variables, using both the p-value and t-statistic criteria. How do the models compare? Which would you choose? Use a level of significance of 0.05. E Click the icon to view the Credit Approval Decisions data. i........ Credit approval decisions data table ..... What is the best model using the p-value criteria? Select the best answer below and fill in the answer boxes to complete your choice. (Type integers or decimals rounded to three decimal places as needed.) Revolving Utilization (%) Credit Score Years of Credit Revolving Balance (S) History O A. Credit Score = ) Years + (O Balance 728 21 11,420 0.23 VB. Credit Score = 760.800 + (- 219.013) Utilization 576 8 7,300 0.71 680 13 20,100 0.52 O C. Credit Score = O Balance 628 17 12,900 0.68 530 10…arrow_forwardWe wish to determine if there is a correlation between the birth weight (in grams) of nine newborn infants and the length of their mothers’ stay (in days) in the hospital. The results of a correlation and regression analysis are indicated in the Excel output below. The mean birth weight of the newborn infants (the independent variable) was 3162.5 grams, and the mean length of their mothers’ stay in the hospital (the dependent variable) was 7 days. SUMMARY OUTPUT Regression Statistics Multiple R 0.862675 R Square 0.744208 Adjusted R Square 0.707666 Standard Error 6.02142 Observations 9 ANOVA df SS MS F Significance F Regression 1 738.4198 738.4198 20.36599 0.002756 Residual 7 253.8025 36.25749 Total 8 992.2222…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY